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Abstract—Traffic classification has wide applications in network management, from security monitoring to quality of service

measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods.

The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages,

such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of

classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we

propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by

incorporating correlated information into the classification process. We analyze the new classification approach and its performance

benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data

sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even

under the extreme difficult circumstance of very few training samples.

Index Terms—Traffic classification, network operations, security

Ç

1 INTRODUCTION

NETWORK traffic classification has drawn significant
attention over the past few years [1], [2], [3], [4], [5].

Classifying traffic flows by their generation applications
plays very important role in network security and manage-
ment, such as quality of service (QoS) control, lawful
interception and intrusion detection [6]. Traditional traffic
classification methods [1], [7], [2] include the port-based
prediction methods and payload-based deep inspection
methods. In current network environment, the traditional
methods suffer from a number of practical problems, such
as dynamic ports and encrypted applications. Recent
research efforts have been focused on the application of
machine learning techniques to traffic classification based
on flow statistical features [2]. Machine learning can
automatically search for and describe useful structural
patterns in a supplied traffic data set, which is helpful to
intelligently conduct traffic classification [8], [7]. However,
the problem of accurate classification of current network
traffic based on flow statistical features has not been solved.

The flow statistical feature-based traffic classification can
be achieved by using supervised classification algorithms
or unsupervised classification (clustering) algorithms [2]. In
unsupervised traffic classification, it is very difficult to
construct an application oriented traffic classifier by using

the clustering results without knowing the real traffic classes
[9], [10]. Given a set of prelabeled training data, the
supervised traffic classification can be divided into two
categories: parametric classifiers and nonparametric classi-
fiers. Parametric classifiers, such as C4.5 decision tree [11],
Bayesian network [11], SVM [3], and neural networks [12],
require an intensive training procedure for the classifier
parameters. Nonparametric classifiers, e.g., k-Nearest Neigh-
bor (k-NN) [13], usually require no training phase and make
classification decision based on closest training samples in the
feature space [14]. When k ¼ 1, the NN-based traffic classifier
assigns a testing traffic flow into the class of its nearest
training sample. As reported in [3], the NN classifier can
achieve superior performance similar to that of the para-
metric classifiers, SVM and neural nets. They are the top three
out of seven evaluated machine learning algorithms. In
contrast to the parametric classifiers, the NN classifier has
several important advantages [14]. For example, it does not
require training procedure, immunizes overfitting of para-
meters and is able to handle a huge number of classes. In this
point of view, the NN classifier is more suitable for traffic
classification in current complex network environment.

However, the performance of the NN classifier is severely
affected by a small size of training data which cannot
accurately represent the traffic classes. We have observed
that the classification accuracy of the NN-based traffic
classifier decreases by approximate 20 percents when the
number of training samples reduces from 100 to 10 for each
class (see Section 3.1 for detail). Other supervised classifica-
tion methods, such as SVM and neural nets, are not robust to
training data size either. In practical, we may only manually
label very few samples as supervised training data since
traffic labeling is time consuming, especially for encrypted
applications. It is essential that traffic classification can work
with very few manually labeled training samples for some
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specific purposes. This observation and the need for such
traffic classifiers motivate our work.

In this paper, we propose a new framework, Traffic

Classification using Correlation (TCC) information, to
address the problem of very few training samples. The
correlation information in network traffic can be used to
effectively improve the classification accuracy. The major
contributions of this work are summarized as follows:

. We propose a novel nonparametric approach which
incorporates correlation of traffic flows to improve
the classification performance.

. We provide a detailed analysis on the novel
classification approach and its performance benefit
from both theoretical and empirical aspects.

. The performance evaluation shows that the traffic
classification using very few training samples can be
significantly improved by our approach.

All data related to this work are available at http://anss.
org.au/tc.

The remainder of the paper is organized as follows:
Section 2 reviews related work in traffic classification. A
novel classification approach and the theoretical analysis
are proposed in Section 3. Section 4 presents a large number
of experiments and results for performance evaluation.
Some discussions related to this work are provided in
Section 5. Finally, the paper is concluded in Section 6.

2 RELATED WORK

In the last decade, considerable research works were
reported on the application of machine learning techniques
to traffic classification. These works can be categorized as
supervised methods or unsupervised methods.

2.1 Supervised Methods

The supervised traffic classification methods analyze the
supervised training data and produce an inferred function
which can predict the output class for any testing flow. In
supervised traffic classification, sufficient supervised train-
ing data is a general assumption. To address the problems
suffered by payload-based traffic classification, such as
encrypted applications and user data privacy, Moore and
Zuev [7] applied the supervised naive Bayes techniques to
classify network traffic based on flow statistical features.
Williams et al. [11] evaluated the supervised algorithms
including naive Bayes with discretization, naive Bayes with
kernel density estimation, C4.5 decision tree, Bayesian
network, and naive Bayes tree. Nguyen and Armitage [15]
proposed to conduct traffic classification based on the
recent packets of a flow for real-time purpose. Auld et al.
[12] extended the work of [7] with the application of
Bayesian neural networks for accurate traffic classification.
Erman et al. [16] used unidirectional statistical features for
traffic classification in the network core and proposed an
algorithm with the capability of estimating the missing
features. Bernaille and Teixeira [17] proposed to use only
the size of the first packets of an SSL connection to
recognize the encrypted applications. Bonfiglio et al. [18]
proposed to analyze the message content randomness
introduced by the encryption processing using Pearson’s
chi-Square test-based technique. Crotti et al. [19] proposed

the probability density function (PDF)-based protocol
fingerprints to express three traffic statistical properties in
a compact way. Their work is extended with a parametric
optimization procedure [20]. Este et al. [21] applied one-
class SVMs to traffic classification and presented a simple
optimization algorithm for each set of SVM working
parameters. Valenti et al. [22] proposed to classify P2P-TV
traffic using the count of packets exchanged with other
peers during the small time windows. Pietrzyk et al. [23]
evaluated three supervised methods for an ADSL provider
managing many points of presence, the results of which are
comparable to deep inspection solutions. These works use
parametric machine learning algorithms, which require an
intensive training procedure for the classifier parameters
and need the retraining for new discovered applications.

There are a few works using nonparametric machine
learning algorithms. Roughan et al. [13] have tested NN and
LDA methods for traffic classification using five categories
of statistical features. Kim et al. [3] extensively evaluated
ports-based CorelReef method, host behavior-based BLINC
method and seven common statistical feature-based meth-
ods using supervised algorithms on seven different traffic
traces. The performance of the NN-based traffic classifier is
comparable to two outstanding parametric classifiers, SVM
and neural nets [3]. Although nonparametric methods have
several important advantages which are not shared by
parametric methods, their capabilities have been considered
undervalued in the area of traffic classification.

Besides, supervised learning has also been applied to
payload-based traffic classification. Although traffic classi-
fication by searching application signatures in payload
content is more accurate, deriving the signatures manually
is very time consuming. To address this problem, Haffner
et al. [8] proposed to apply the supervised learning
algorithms to automatically identify signatures for a range
of applications. Finamore et al. [24] proposed application
signatures using statistical characterization of payload and
applied supervised algorithms, such as SVM, to conduct
traffic classification. Similar to the supervised methods
based on flow statistical features, these payload-based
methods require sufficient supervised training data.

2.2 Unsupervised Methods

The unsupervised methods (or clustering) try to find cluster
structure in unlabeled traffic data and assign any testing
flow to the application-based class of its nearest cluster.
McGregor et al. [25] proposed to group traffic flows into a
small number of clusters using the expectation maximiza-
tion (EM) algorithm and manually label each cluster to an
application. Zander et al. [26] used AutoClass to group
traffic flows and proposed a metric called intraclass
homogeneity for cluster evaluation. Bernaille et al. [9]
applied the k-means algorithm to traffic clustering and
labeled the clusters to applications using a payload analysis
tool. Erman et al. [27] evaluated the k-means, DBSCAN and
AutoClass algorithms for traffic clustering on two empirical
data traces. The empirical research showed that traffic
clustering can produce high-purity clusters when the
number of clusters is set as much larger than the number
of real applications. Generally, the clustering techniques can
be used to discover traffic from previously unknown
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applications [28]. Wang et al. [29] proposed to integrate
statistical feature-based flow clustering with payload
signature matching method, so as to eliminate the require-
ment of supervised training data. Finamore et al. [30]
combined flow statistical feature-based clustering and
payload statistical feature-based clustering for mining
unidentified traffic. However, the clustering methods suffer
from a problem of mapping from a large number of clusters
to real applications. This problem is very difficult to solve
without knowing any information about real applications.

Erman et al. [10] proposed to use a set of supervised
training data in an unsupervised approach to address the
problem of mapping from flow clusters to real applications.
However, the mapping method will produce a large
proportion of “unknown” clusters, especially when the
supervised training data is very small. In this paper,
we study the problem of supervised traffic classification
using very few training samples. From the supervised
learning point of view, several supervised samples are
available for each class. Without the process of unsuper-
vised clustering, the mapping between clusters and
applications can be avoided. Our work focuses on non-
parametric classification methods and address the difficult
problem of traffic classification using very few training
samples. The motivations are twofold. First, as mentioned
in Section 1, nonparametric NN method has three important
advantages which are suitable for traffic classification in
current complex network situation. Second, labeling train-
ing data is time consuming and the capability of classifica-
tion using very few training sample is very useful.

3 A TRAFFIC CLASSIFICATION APPROACH WITH

FLOW CORRELATION

This section presents a new framework which we call
Traffic Classification using Correlation information or
TCC for short. A novel nonparametric approach is also
proposed to effectively incorporate flow correlation infor-
mation into the classification process.

3.1 System Model

Fig. 1 shows the proposed system model. In the preproces-
sing, the system captures IP packets crossing a computer
network and constructs traffic flows by IP header inspec-
tion. A flow consists of successive IP packets having the
same five-tuple: fsrc ip; src port; dst ip; dst port; protocolg.
After that, a set of statistical features are extracted to
represent each flow. Feature selection aims to select a subset

of relevant features for building robust classification
models. Flow correlation analysis is proposed to correlate
information in the traffic flows. Finally, the robust traffic
classification engine classifies traffic flows into application-
based classes by taking all information of statistical features
and flow correlation into account.

We observe that the accuracy of conventional traffic
classification methods are severely affected by the size of
training data. Fig. 2 reports the average overall accuracy
of three classification algorithms [31] when a small size of
training data is available. The experimental conditions are
described in detail in Section 4. The classification perfor-
mance of all algorithms are very poor when only 10 or
20 training samples are available for each class. In our
experiments, NN classifier has the best classification
performance. However, in the case of 10 training samples,
the average overall accuracy of NN classifier is only about
60 percent on two data sets, which is very low.

The novelty of our system model is to discover
correlation information in the traffic flows and incorporate
it into the classification process. Conventional supervised
classification methods treat the traffic flows as the indivi-
dual and independent instances. They do not take the
correlation among traffic flows into account. We argue that
the correlation information can significantly improve the
classification performance, especially when the size of
training data is very small. In the proposed system model,
flow correlation analysis is a new component for traffic
classification which takes the role of correlation discovery.
Robust classification methods can use the correlation
information as input.

In this paper, we use “bag of flows” (BoF) to model
correlation information in traffic flows.

. A BoF consists of some correlated traffic flows which are
generated by the same application.

A BoF can be described by

Q ¼ fx1; . . . ;xng; ð1Þ

where xi is a feature vector representing the ith flow in the
BoF Q. The BoF Q explicitly denotes the correlation among
n flows, fx1; . . . ;xng. The power of modeling correlation
information with a bag has been demonstrated in our
preliminary work for image ranking [32]. In this paper, the
proposed flow correlation analysis will produce and
analyze a large number of BoFs (see Section 3.3). A robust
classification method should be able to deal with BoFs
instead of individual flows. We will comprehensively study
traffic classification with the BoF model from both
theoretical and empirical perspectives.
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Fig. 1. A new traffic classification system model.

Fig. 2. Impact of training data size.



3.2 Probabilistic Framework

In this section, we present a probabilistic framework for BoF

model-based traffic classification. Given a BoF as the query,

Q ¼ fx1; . . . ;xng, all flows in the BoF Q will be classified

into the predicted class for Q.
According to the Bayesian decision theory [14], the

maximum-a-posteriori (MAP) classifier aims to minimize
the average classification error. For the query Q, the optimal
class given by the MAP classifier is !� ¼ arg max!P ð!jQÞ.
With the assumption of uniform prior P ð!Þ, we have the
Maximum-Likelihood (ML) classifier

!� ¼ arg max
!

P ð!jQÞ ¼ arg max
!

pðQj!Þ: ð2Þ

We consider the Naive-Bayes assumption in this study:

pðQj!Þ ¼ pðx1; . . . ;xnj!Þ ¼
Q

x2Q pðxj!Þ. And the log prob-

ability of the ML classifier is

!� ¼ arg max
!

logðpðQj!ÞÞ

¼ arg max
!

1

Qk k
X
x2Q

logðpðxj!ÞÞ:
ð3Þ

Taking practical use into account, we uses an NN classifier

to approximate the above optimal MAP Naive-Bayes

classifier [33]. First, the Parzen likelihood estimation

p̂ðxj!Þ is:

p̂ðxj!Þ ¼ 1

!k k
X
x02!

Kðx� x0Þ; ð4Þ

where Kð�Þ is a Parzen kernel function and x0 is a

supervised training sample. We choose the Gaussian

function for this study

Kðx� x0Þ ¼ exp � 1

2�2
x� x0k k2

� �
: ð5Þ

The summation in (4) can be approximated using the r

largest elements in the sum, which correspond to the r

nearest neighbors of a flow x 2 Q within the training data of

the class !

p̂ðxj!Þ ¼ 1

!k k
Xr
j¼1

Kðx� x0NNj
Þ: ð6Þ

When the kernel function is Gaussian and r ¼ 1, one can

obtain

logðp̂ðxj!ÞÞ ¼ � 1

2�2 !k k min
x02!

x� x0k k2
; ð7Þ

and

logðp̂ðQj!ÞÞ ¼ � 1

2 Qk k�2 !k k
X
x2Q

min
x02!

x� x0k k2
: ð8Þ

With the assumption of uniform prior P ð!Þ, the scale

parameter 1
2�2 !k k will not affect the classification result. We

have logðp̂ðQj!ÞÞ / � 1
Qk k
P

x2Q minx02! x� x0k k2. Therefore,

the classifier for BoFs is

!� ¼ arg max
!

logðpðQj!ÞÞ

¼ arg min
!

1

Qk k
X
x2Q

min
x02!

x� x0k k2
:

ð9Þ

Equation (9) shows a new nonparametric approach for BoF
model-based traffic classification, which is derived from the
Bayesian decision theory.

3.3 Correlation Analysis

We conduct correlation analysis using a three-tuple heur-
istic, which can quickly discover BoFs in the real traffic data.

. Three-tuple heuristic: in a certain period of time, the
flows sharing the same three-tuple fdst ip; dst port;
protocolg form a BoF.

The correlated flows sharing the same three-tuple are
generated by the same application. For example, several
flows initiated by different hosts are all connecting to a
same host at TCP port 80 in a short period. These flows are
very likely generated by the same application such as a web
browser. The three-tuple heuristic about flow correlation
has been considered in several practical traffic classification
schemes [34], [35], [36]. Ma et al. [34] proposed a payload-
based clustering method for protocol inference, in which
they grouped flows into equivalence clusters using the
heuristic. Canini et al. [35] tested the correctness of the
three-tuple heuristic with real-world traces. In our previous
work [36], we applied the heuristic to improve unsuper-
vised traffic clustering. In this paper, we use BoF to model
the correlation information obtained by the three-tuple
heuristic and study the BoF model-based supervised
classification, which is different from the exiting works
[34], [35], [36]. Our new research problem is how to
effectively use the correlation information in a supervised
classification framework, which has been addressed in
Section 3.2 from the theoretical perspective.

We measure the efficiency of the BoF discovery method
by calculating some statistics of five real-world traffic data
sets. The traffic data sets cover a wide range of link types
such as backbone, internal, edge and wireless. The sigcomm
traces [37] contains a detailed trace of wireless network
activity at SIGCOMM 2008. The lbnl traces [38] are captured
at two internal network locations of the Lawrence Berkeley
National Laboratory in America. The keio trace [39] is
collected from a 1 Gbps Ethernet link in Keio University
Shonan-Fujisawa campus in Japan. The wide traces [39] are
captured at a 150 Mbps Ethernet trans-Pacific backbone link
that carries commodity traffic for the WIDE member
organizations. The isp trace is a full payload traffic data set
we collected at a 100 Mbps edge link of a small-medium ISP
located in Melbourne, Australia from 11/2010 to 12/2010.
For all the data sets, we focus exclusively on TCP traffic in
this work and leave the non-TCP traffic for future work.

The statistical results are reported in Table 1. From the
results, we observe that the correlation information is
widely available in real network traffic. For instance,
correlation occurs among 98 percent of flows in wide data
set and 99 percent of flows in isp data set. The correlation
information is valuable and can be exploited to enhance the
performance of traffic classification.
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3.4 Performance Benefit

We study performance benefit of the proposed approach by
providing the theoretical and empirical analysis in a binary
classification case. The analysis can be extended to the
multiclass classification case in a straightforward way. Fig. 3
illustrates the performance benefit using both simulation
data and real network traffic data.

Considering a binary classification problem, the decision
rule of the NN classifier [14] for two classes, !1 and !2, is

!� ¼
!1; for min

x02!1

x� x0k k2
< min

x02!2

x� x0k k2

!2; for min
x02!1

x� x0k k2
> min

x02!2

x� x0k k2
;

8<
: ð10Þ

where minx02!i x� x0k k2; i 2 f1; 2g is the distance of x to
class !i. We define the “distance divergence” of x as

�x ¼ min
x02!1

x� x0k k2�min
x02!2

x� x0k k2
: ð11Þ

The value of �x determines which class x is close to.
Accordingly, the decision rule of the NN classifier
expressed by (10) becomes

!� ¼ !1; for �x < 0
!2; for �x > 0:

�
ð12Þ

In this study, it is assumed that the distance divergence
of traffic flows in any class is independent and identically
distributed (i.i.d.). The normal distribution is used for
theoretical analysis. The probability density function (PDF)
[14] of flow distance divergence is

pð�xÞ �
N �1; �

2
1

� �
for !1

N �2; �
2
2

� �
for !2;

�
ð13Þ

where parameters �1 and �2 denote means, and �2
1 and �2

2

stand for variances. With the NN classifier, an individual flow
x is classified according to its distance divergence �x using the
decision rule in (12). The classification error can occur if

x 2 !1 with �x > 0;
or
x 2 !2 with �x < 0:

8<
: ð14Þ

Fig. 3a shows the simulation using the normal distributions.
It is generally acceptable that the NN classifier is better than
random guessing, so we set �1 < 0 and �2 > 0. In the figure,
the classification error of the NN classifier is highlighted by
the large lined area.

Let us consider the BoF model-based approach, which is
expressed by (9). Given a query BoF, Q ¼ fx1; . . . ;xng, the
distance of Q to class ! is calculated by 1

n

P
x2Q minx02!kx �

x0k2. The distance of Q is used for each of the flows in Q. We
define the distance divergence of Q as

�Q ¼
1

n

X
x2Q

min
x02!1

x� x0k k2� 1

n

X
x2Q

min
x02!2

x� x0k k2

¼ 1

n

X
x2Q

min
x02!1

x� x0k k2�min
x02!2

x� x0k k2

� �

¼ 1

n

X
x2Q

�x:

ð15Þ

Consequently, the distance divergence of Q is also used for
each of the flows in Q. Then, the decision rule of our
proposed method becomes

!� ¼ !1; for �Q < 0
!2; for �Q > 0:

�
ð16Þ

It is assumed that the distribution of flow distance divergence
is normal, as shown in (13). Then, taking into account (15), the
distribution of flow distance divergence produced by the BoF
model-based approach is also normal. The PDFs for the BoF
model-based flow distance divergence are

pð�̂QÞ �
N �1;

�2
1

n

� �
for !1 bags;

N �2;
�2

2

n

� �
for !2 bags:

8<
: ð17Þ

Similar to the NN classifier, the classification error of the
proposed approach can occur if

Q 2 !1 with �Q > 0;
or
Q 2 !2 with �Q < 0:

8<
: ð18Þ

The classification errors are highlighted by the small shaded
area in Fig. 3a. We can find that the error area of the
proposed method is smaller than that of the NN classifier.
In other words, the classification performance can be
improved when the correlation among traffic flows is
utilized in the classification scheme.

Furthermore, we investigate the classification error based
on the normal distribution assumption. According to (13)
and (14), the probability of error for the NN classifier is

PNNðerrorÞ ¼
Z þ1

0

p!1
ðtÞdtþ

Z 0

�1
p!2
ðtÞdt

¼ 1� �
��1

�1

� �
þ �

��2

�2

� �
;

ð19Þ

where �ðxÞ is the cumulative distribution function (cdf) of
the standard normal distribution, which is defined as

�ðxÞ ¼ 1ffiffiffiffiffiffi
2�
p

Z x

�1
e�t

2=2dt: ð20Þ
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Statistics of Traffic Data Sets

Fig. 3. Performance benefit illustration.



Since �ðxÞ is an increasing function, �1 < 0 and �2 > 0, we
have PNNðerrorÞ / �1 and PNNðerrorÞ / �2. The probability
of error will decrease if the standard deviations of two
classes decrease simultaneously. According to (17), the
probability of error for our proposed approach is

PBoF ðerrorÞ ¼ 1� �
�

ffiffiffi
n
p

�1

�1

� �
þ �

�
ffiffiffi
n
p

�2

�2

� �
: ð21Þ

Specifically, the improvement is

Pimprove ¼ PNNðerrorÞ � PBoF ðerrorÞ

¼ �
� ffiffiffi

n
p

�1

�1

� �
� �

��1

�1

� �
þ �

��2

�2

� �
� �

� ffiffiffi
n
p

�2

�2

� �
:

ð22Þ

Obviously, we have Pimprove > 0 and the improvement is
related to n. Our proposed approach can effectively reduce
the probability of error since the standard deviations decrease
simultaneously from �1 to �1ffiffi

n
p for !1 and from �2 to �2ffiffi

n
p for !2.

We also evaluate performance benefit of the proposed
approach using real network traffic data. Fig. 3b illustrates
the performance benefit using the PDFs of distance
divergence on a subset of our isp traffic data set (see Section
4.1 for detail), which consists of 5k IMAP flows and 5k MSN
flows. The distance divergence is calculated based on a
small number of training data. BoFs in the data set are
constructed by the correlation analysis method presented in
Section 3.3. The lined area represents the classification error
of the NN classifier. The shaded area represents the
classification error of our proposed approach, which is
inside the lined area. Since the shade area is smaller than
the lined area, the classification accuracy of the proposed
method outperforms that of the NN classifier. The results of
using real data are consistent with the simulation results,
which further confirms the benefit of flow correlation to the
classification performance.

When only very few training samples are available, we
observe that the standard deviation of flow distance
divergence is normally large, which leads to high classifica-
tion error. In the proposed approach, the mean of BoF-
based flow distance divergence is the same to that of the
NN classifier. However, the standard deviation of the BoF-
based flow distance divergence is much smaller than that of
the NN classifier. For instance, in Fig. 3b, the means of flow
distance divergence for IMAP and MSN are -0.14 and 0.12,
which do not change for our proposed approach. But the
standard deviation of flow distance divergence for IMAP
reduces from 0.12 for the NN classifier to 0.04 for the
proposed approach. The standard deviation for MSN
reduces from 0.14 for the NN classifier to 0.08 for the
proposed approach. The classification error declines con-
siderably as the standard deviations of flow distance
divergence decrease. Therefore, the performance benefit
can be obtained because the proposed approach can use
correlation information to effectively reduce the standard
deviation of flow distance divergence.

3.5 Classification Methods

Let us revisit the BoF model-based classification approach
described by (9). It can be interpreted as that a BoF can be
classified by aggregating the prediction values of flows
produced by the NN classifier. In (9), the prediction value of

a flow x produced by the NN classifier is defined using its
minimum distance to the training samples of class !

dx ¼ min
x02!

x� x0k k2
: ð23Þ

The distance of a query BoF Q to class ! is obtained by
aggregating the flow distances with the “average” operation
as follows:

davgQ ¼
1

Qk k
X
x2Q

dx: ð24Þ

Finally, the flows in Q are classified into the class with the
minimum distance of Q. This classification method de-
scribed by (9) is named “AVG-NN.”

From this viewpoint, we can apply different combination
operations [40] to aggregate the flow distances, so as to obtain
different classification methods for BoFs. With the “mini-
mum” operation, the distance of Q to ! can be calculated by

dminQ ¼ min
x2Q

dx: ð25Þ

And the modified decision rule is

!� ¼ arg min
!
ðmin

x2Q
min
x02!

x� x0k k2Þ: ð26Þ

The classification method described by (26) is named “MIN-

NN.”
Furthermore, we can aggregate the binary prediction

values produced by the NN classifier to conduct classifica-
tion of BoFs. The decision rule of the NN classifier is

!�x ¼ arg min
!
ðmin

x02!
x� x0k k2Þ: ð27Þ

We define the vote of a flow x for class ! as

v!ðxÞ ¼
1; for ! is !�x
0; else :

�
ð28Þ

With the “majority vote” rule, the modified decision rule

becomes

!� ¼ arg max
!
ð
X
x2Q

v!ðxÞÞ: ð29Þ

The classification method described by (29) is called “MVT-

NN.”
Table 2 summaries the proposed classification approach.

In Step 4, we can apply different aggregation strategies,
which have different meanings.

. AVG-NN: combines multiple flow distances to make
a decision for a BoF;
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. MIN-NN: chooses a minimum flow distance to make
a decision for a BoF;

. MVT-NN: combines multiple decisions on flows to
make a final decision for a BoF.

Our study show that they have different impact for
traffic classification.

4 PERFORMANCE EVALUATION

In this section, we evaluate the proposed classification
methods on two real-world traffic data sets, wide and isp.
First, there are no IP payload available in the sigcomm, lbnl,
and keio traces and the accurate ground truth for these
traces cannot be built up. Second, we prefer to perform
performance evaluation using the large-scale data sets and
wide and isp are the largest ones among the five traces.

4.1 Data Sets

In order to evaluate the work presented in this paper,
we have established the ground truth for the part-payload
wide trace [39] and our full-payload isp trace [36]. To do this,
we have developed a deep packet inspection (DPI) tool that
matches regular expression signatures against flow payload
content. A number of application signatures are developed
based on previous experience and some well-known tools
such as l7-filter (http://l7-filter.sourceforge.net) and Tstat
(http://tstat.tlc.polito.it). Also, several encrypted and new
applications are investigated by manual inspection of the
unidentified traffic. We note that ongoing work is being
undertaken to fully identify the rest of the unidentified
traffic. The isp trace and a full document will be made
publicly available to the research community.

In our experiments, we use two data sets for testing
classification methods, as summarized in Table 3. One is the
wide data set, which is obtained from the wide trace. The
wide data set consists of 182k identified traffic flows except
encrypted flows. Following the work in [3], all flows are
categorized into six classes, P2P, DNS, FTP, WWW, CHAT,
and MAIL. The characteristic of the wide data set is that it
has a small number of classes and the WWW flows
dominates the whole data set. The other is the isp data set,
which is sampled from our isp trace. The isp data set
consists of 200k flows randomly sampled from 14 major
classes: BT, DNS, eBuddy, FTP, HTTP, IMAP, MSN, POP3,
RSP, SMTP, SSH, SSL, XMPP, and YahooMsg. The isp data
set has more classes than the wide data set and includes
encrypted flows, which makes traffic classification more
difficult. To sufficiently take into account the difficulty of
multiclass classification, we randomly select 30k flows from
each of the dominant classes, such as BT and HTTP.
Therefore, no class dominates the isp data set.

Like most of the previous works [2], [3], we use only TCP
flows to perform the experiments in this paper since TCP
flows dominate the wide and isp traces. Our proposed
classification approach concentrates on effectively utilize

flow correlation information, which is independent of the
transport layer protocol and flow statistical features.
Considering the applications using UDP are growing, we
plan to further evaluate the proposed approach using UDP
flows in the future.

4.2 Experiments

To measure the classification performance, we use two
metrics: overall accuracy and F-measure, which are widely
used for performance evaluation in the area of traffic
classification [3].

. Overall accuracy is the ratio of the sum of all
correctly classified flows to the sum of all testing
flows. This metric is used to measure the accuracy of
a classifier on the whole testing data.

. F-measure is calculated by

F �measure ¼ 2� precision� recall
precisionþ recall ; ð30Þ

where precision is the ratio of correctly classified
flows over all predicted flows in a class and recall is
the ratio of correctly classified flows over all ground
truth flows in a class. F-Measure is used to evaluate
the per-class performance.

In this work, 20 unidirectional flow statistical features are
extracted and used to represent traffic flows, which are listed
in Table 4. Feature selection can optimize for high learning
accuracy with lower computational complexity. We apply
feature selection to remove irrelevant and redundant
features from the feature set [41]. We use the correlation-
based filter (CFS) [42], [11] and a best first search to generate
optimal feature set for each data set. The process of feature
selection [31] yields seven and six features for the experi-
ments on the wide data set and the isp data set, respectively.

We choose the NN classifier representing conventional
classification methods for comparison with our proposed
approach. First, NN has better performance than Neural
Nets and SVM on the wide and isp data sets, which is shown
in Fig. 2. Second, the proposed approach is nonparametric,
which shares many advantages with NN. For performance
comparison, four classification methods are implemented
using the Java language, which are NN, AVG-NN, MIN-
NN, and MVT-NN. In these methods, NN does not take into
account correlation information in traffic flows. The other
three methods proposed in this paper can incorporate
correlation information into the classification process.

Taking into account the requirement of very few training
samples, the size of training samples for each experiment is

110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

TABLE 3
Data Sets for Performance Evaluation

TABLE 4
Simple Unidirectional Statistical Features



less than 50 per class. We repeat each experiment for 100
times with different random seeds for selecting supervised
training samples and report the average result on all runs.

4.3 Results

To comprehensively evaluate the proposed approach, the

experimental results are reported as overall performance,

per-experiment performance and per-class performance.

4.3.1 Overall Performance

The overall performance is evaluated in terms of average
overall accuracy against varying training data size from 10
to 50 per class. Fig. 4 shows the overall performance of the
four classification methods on the two data sets.

First, a general observation is that all of the proposed
methods outperform the NN classifier significantly when
only a small number of training data are available. The
improvement on overall accuracy is from 10 to 20 percent.
For instance, when 10 training samples are available for
each class, the average overall accuracy of AVG-NN is
higher than that of NN by approximately 15 and 20 percent
for the isp data set and the wide data set, respectively. The
reason is that the proposed methods can incorporate
correlation information into the class prediction, which is
much helpful to improve the classification accuracy.

Second, in terms of overall performance, AVG-NN is
the best one among the three proposed methods. The
average overall accuracy of AVG-NN is always higher
than MIN-NN by about 5 percent on the wide data set. On
the isp data set, the increase is about 3 to 5 percent. MVT-
NN is slightly better than MIN-NN on the two data sets.
The reason is that the AVG-NN and MVT-NN methods
can combine multiple flow prediction values to classify a
BoF while the MIN-NN method chooses just one flow
prediction value to make a decision.

4.3.2 Per-Experiment Performance

Figs. 5 and 6 show the overall accuracy for each experiment
using 10 and 20 training samples per class, respectively.
Each proposed method is compared with the NN method,
so the difference of classification performance in any
specific experiment is very clear.

One can see that the classification performance is
unstable due to very few training samples, especially in
the case of 10 training samples per class. For instance, when
10 training samples are available on the wide data set, the
performance of NN is between 30 and 80 percent. The gap
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between the best performance and the worst performance
can be up to 50 percent. Therefore, the impact of very few
training samples to the classification performance is severe.

The figures show that in nearly every experiment each
proposed method has much higher accuracy than the NN
classifier. The exception, that the overall accuracy of a
proposed method is lower than NN, may occur due to the
unstable performance, but the number of exceptions is very
low. On the wide data set, when 10 training samples are
available, AVG-NN has two exceptions in 100 experiments.
The number of exceptions for MIN-NN and MVT-NN are
three and one in 100 experiments, respectively. One
exception for MIN-NN occurs for the case of 10 training
samples on the wide data set. And two exceptions for AVG-
NN occur on the isp data set when 10 training samples are
available for each class. In other cases, the percentage of the
proposed methods successfully improving the performance
is 100 percent in 100 experiments. The results demonstrate

that the proposed methods can improve the classification
performance in a robust way. Flow correlation is commonly
present in real-world network traffics, which is independent
to the supervised training data. The combination of flow
correlation and supervised training data can affect the
amount of performance improvement.

4.3.3 Per-Class Performance

We use the F-measure metric to measure the per-class
performance of the four methods on the two data sets.

Fig. 7 shows the F-measure for each class on the wide data
set. For the NN classifier, WWW is the easiest to classify. The
proposed methods can further improve the performance by
about 10 percent in the class. DNS and MAIL are not easy to
classify for NN. For these two classes, the proposed methods
can significantly improve the classification results. AVG-NN
shows the best performance, which can improve the F-
measure over NN by about 20 percent for DNS and 15 percent
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for MAIL. The performance of MVT-NN is slightly better

than MIN-NN, both of them outperform NN. In the classes,

WWW, DNS, and MAIL, the F-measure of AVG-NN can be

over 90 percent. In contrast, it is very hard to classify P2P,

FTP, and CHAT, since each class itself may contain multiple

applications and communication patterns. Nevertheless, the

proposed methods can effectively improve the classification

performance for these classes and the improvement is from

10 to 20 percent.
Fig. 8 reports the F-measure for each class on the isp data

set. It can be seen that the proposed methods can successfully

improve the F-measure for each class. The improvement is

class based. Similar to the above analysis on the wide data set,

all applications can be divided into three categories according

to the performance of NN, i.e., easy classes, average classes,

and hard classes. BT, POP3, SMTP, and SSH are easy classes,

in which the F-measure of NN can achieve 80 percent. In

the easy classes, although the improvement space is small,
the proposed methods, especially AVG-NN, can further

improve the performance. For instance, the improvement is

10 percent for POP3. The average classes include DNS, FTP,

HTTP, IMAP, MSN, SSL, and XMPP, in which the F-measure
of NN is close to 50 percent. The proposed methods,

especially AVG-NN, improve the F-measure dramatically

for these average classes. For example, the F-measure of
AVG-NN is higher than NN by about 40 percent for FTP

traffic. The eBuddy, RSP, and YahooMsg traffics are hard for

NN to classify. The F-measures of NN for the hard classes are
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much lower than 50 percent. The proposed methods can
improve the F-measure of these hard classes, although the
improvement is not very significant.

We observe that the proposed methods do not differ-
entiate much from some of the classes, for example, SSH,
eBuddy, and YahooMsg. There may be different reasons for
different classes. SSH flows are easy to be classified and
there is little space left for improvement. In the two testing
data sets, the amount of eBuddy flows and YahooMsg flows
are very small, which is insufficient to represent the nature
of these classes. The traffic classifier constructed by using
the sampled training data has poor generalization for
eBuddy and YahooMsg flows. Moreover, based on the
ground truth we find that there are not many correlated
flows in these classes. The poor training data and the
limited correlation information affect the performance
improvement of the proposed methods.

4.3.4 Comparison with Other Existing Methods

A set of experiments are performed to compare the
proposed TCC approach to other recent traffic classification
methods including C4.5 [11], BayesNet [11], and Erman’s
clustering-based method [10]. In these experiments, TCC
adopts the AVG-NN method due to its superior classifica-
tion performance and Erman’s method is implemented
without considering unknown classes in the training stage.

Fig. 9 shows the overall performance of four competing
methods on the wide and isp data sets. The results show that
TCC outperforms other three recent traffic classification
methods. In the situation of very few supervised training

data, flow correlation can benefit to the traffic classification
and TCC possesses the capability of using flow correlation
to effectively improve the traffic classification performance.

4.3.5 Summary

In this paper, we present three methods, AVG-NN, MIN-
NN, and MVT-NN, to implement our new approach, TCC.
Based on the experimental results, we observe the following.

. With comparison to the NN classifier, the proposed
methods can effectively improve the overall perfor-
mance of traffic classification.

. The proposed methods can improve the classification
accuracy in a robust way and consistent improve-
ment is achieved in almost every experiment.

. The proposed methods can improve the F-measure
of every class and significant improvements are
obtained in most classes.

. AVG-NN shows better performance than MIN-NN
and MVT-NN in terms of overall performance, per-
experiment performance, and per-class performance.

. TCC is superior to the existing traffic classification
methods since it demonstrates the ability of applying
flow correlation to effectively improve traffic classi-
fication performance.

5 DISCUSSION

In this section, we provide some discussions on computa-
tional performance, system flexibility, and related ap-
proaches.

5.1 Computational Performance

The computational performance includes learning time,
amount of storage, and classification time. First, the NN
classifier does not really involve any learning process,
which is shared with our proposed methods. However,
other supervised methods, such as neural nets and SVM,
need time to learn parameters for their classification model.
Second, the proposed methods use the nearest neighbor
rule which requires storage for all training data samples.
However, the amount of storage is tiny if the training data
size is small.

Fig. 10 shows the classification time of the four methods
versus training data size. Identifying the nearest neighbor of
a given flow from among n training flows is conceptually
straightforward with n distance calculations to be per-
formed. The nearest neighbor rule is embedded in the
proposed methods for traffic classification. With a small
training set, the NN classifiers and the proposed methods
classify very quickly. For instance, with 10 training samples
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for each class, the classification time of the proposed
methods are about 2 and 5 seconds for the wide data set
and isp data set, respectively. The proposed methods, AVG-
NN, MIN-NN, and MVT-NN, have the same classification
time, because they follow the same classification approach.

Due to the extra aggregation operation, the classification
time of the proposed methods is a little longer than NN but
the classification accuracy of our methods is much higher
than NN. If NN achieves the same accuracy to our proposed
methods, it needs more training samples and must spend
more classification time. For instance, to achieve 75 percent
classification accuracy on the wide data set, NN needs about
100 training samples per class while AVG-NN needs only
10 training samples per class. The classification time of NN
is about 15 seconds, which is much longer than 3 seconds of
AVG-NN. On the isp data set, NN with 100 training samples
per class and AVG-NN with 10 training samples per class
can achieve the same classification accuracy, 80 percent.
However, the classification time of NN is about 36 seconds,
while the classification time of AVG-NN is only 5 seconds.
From this perspective, the proposed methods are more
effective than NN.

5.2 System Flexibility

The proposed system model is open to feature extraction
and correlation analysis. First, any kinds of flow statistical
features can be applied in our system model. In this work,
we extract unidirectional statistical features from full flows.
The statistical features extracted from parts of flows [15] can
also be used to represent traffic flows in our system model.
Second, any new correlation analysis method can be
embedded into our system model. We introduce flow
correlation analysis to discover correlation information in
traffic flows to improve the robustness of classification. In
this paper, a three-tuple heuristic-based method is applied
to discover flow correlation which are modeled by BoFs. We
presented the comprehensive analysis from theoretical and
empirical perspectives, which is based on the BoF model
instead of the three-tuple method. Therefore, new correla-
tion analysis methods will not affect the effectiveness of the
proposed approach. In the future, we will work on
developing new methods for flow correlation analysis.

5.3 Related Approaches

Table 5 compares the related approaches by considering
four properties, the amount of prior knowledge, the
capability of using correlation information, the need of

mapping between clusters and applications, and the

capability of handling encrypted traffic. NN-based method

and k-means-based method are chosen to represent the

supervised and unsupervised traffic classification ap-

proaches, respectively.
The proposed approach, TCC, has advantages over other

related approaches. First, this paper has shown that the
proposed approach using correlation information outper-
forms NN-based method in terms of traffic classification
performance. Second, the approaches using clustering
algorithms will suffer from the problem of mapping from
a large number of clusters to a small number of applica-
tions. This mapping problem is difficult to address without
any prior knowledge. Considering supervised training data
size, the method proposed by Erman et al. [10] is most
related to our approach. However, since the former utilizes
supervised training data to label traffic clusters, it will
produce a large proportion of “unknown” flows, especially
when the supervised training data is very small.

Fig. 11 shows the average unknown flow rate of 1,000
experiments using Erma’s method with varying training data
size. In the experiments, k-means algorithm (k ¼ 1;000) is
applied to build up traffic clusters and some supervised
training samples are used to conduct mapping of clusters and
applications. The results show that a large number of flows
are labeled as “unknown,” which is a critical drawback for
the mapping method in practice. For instance, if 10 training
samples are available for each class, there are over 90 percent
flows labeled as “unknown” on the isp and wide data set. In
other words, the correctly classified flows are less than
10 percent of the whole data set. Therefore, our approach is
significantly better than Erma’s method.
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6 CONCLUSION

In this paper, we investigated the problem of traffic
classification using very few supervised training samples.
A novel nonparametric approach, TCC, was proposed to
investigate correlation information in real traffic data and
incorporate it into traffic classification. We presented a
comprehensive analysis on the system framework and
performance benefit from both theoretical and empirical
perspectives, which strongly supports the proposed ap-
proach. Three new classification methods, AVG-NN, MIN-
NN, and MVT-NN, are proposed for illustration, which can
incorporate correlation information into the class prediction
for improving classification performance. A number of
experiments carried out on two real-world traffic data sets
show that the performance of traffic classification can be
improved significantly and consistently under the critical
circumstance of very few supervised training samples. The
proposed approach can be used in a wide range of
applications, such as automatic recognition of unknown
applications from captured network traffic and semi-
supervised data mining for processing network packets.
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