
Secure Distributed Deduplication Systems
with Improved Reliability

Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang, Yang Xiang, Senior Member, IEEE,

Mohammad Mehedi Hassan,Member, IEEE, and Abdulhameed Alelaiwi,Member, IEEE

Abstract—Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to

reduce storage space and upload bandwidth. However, there is only one copy for each file stored in cloud even if such a file is owned

by a huge number of users. As a result, deduplication system improves storage utilization while reducing reliability. Furthermore, the

challenge of privacy for sensitive data also arises when they are outsourced by users to cloud. Aiming to address the above security

challenges, this paper makes the first attempt to formalize the notion of distributed reliable deduplication system. We propose new

distributed deduplication systems with higher reliability in which the data chunks are distributed across multiple cloud servers. The

security requirements of data confidentiality and tag consistency are also achieved by introducing a deterministic secret sharing

scheme in distributed storage systems, instead of using convergent encryption as in previous deduplication systems. Security analysis

demonstrates that our deduplication systems are secure in terms of the definitions specified in the proposed security model. As a proof

of concept, we implement the proposed systems and demonstrate that the incurred overhead is very limited in realistic environments.

Index Terms—Deduplication, distributed storage system, reliability, secret sharing
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1 INTRODUCTION

WITH the explosive growth of digital data, deduplica-
tion techniques are widely employed to backup data

and minimize network and storage overhead by detecting
and eliminating redundancy among data. Instead of keep-
ing multiple data copies with the same content, deduplica-
tion eliminates redundant data by keeping only one
physical copy and referring other redundant data to that
copy. Deduplication has received much attention from both
academia and industry because it can greatly improves stor-
age utilization and save storage space, especially for the
applications with high deduplication ratio such as archival
storage systems.

A number of deduplication systems have been proposed
based on various deduplication strategies such as client-
side or server-side deduplications, file-level or block-level
deduplications. A brief review is given in Section 6. Espe-
cially, with the advent of cloud storage, data deduplication
techniques become more attractive and critical for the

management of ever-increasing volumes of data in cloud
storage services which motivates enterprises and organiza-
tions to outsource data storage to third-party cloud pro-
viders, as evidenced by many real-life case studies [1].
According to the analysis report of IDC, the volume of data
in the world is expected to reach 40 trillion gigabytes in
2020 [2]. Today’s commercial cloud storage services, such as
Dropbox, Google Drive and Mozy, have been applying
deduplication to save the network bandwidth and the stor-
age cost with client-side deduplication.

There are two types of deduplication in terms of the size:
(i) file-level deduplication, which discovers redundancies
between different files and removes these redundancies to
reduce capacity demands, and (ii) block-level deduplication,
which discovers and removes redundancies between data
blocks. The file can be divided into smaller fixed-size or var-
iable-size blocks. Using fixed-size blocks simplifies the com-
putations of block boundaries, while using variable-size
blocks (e.g., based on Rabin fingerprinting [3]) provides bet-
ter deduplication efficiency.

Though deduplication technique can save the storage
space for the cloud storage service providers, it reduces the
reliability of the system. Data reliability is actually a very
critical issue in a deduplication storage system because
there is only one copy for each file stored in the server
shared by all the owners. If such a shared file/chunk was
lost, a disproportionately large amount of data becomes
inaccessible because of the unavailability of all the files that
share this file/chunk. If the value of a chunk were measured
in terms of the amount of file data that would be lost in case
of losing a single chunk, then the amount of user data lost
when a chunk in the storage system is corrupted grows
with the number of the commonality of the chunk. Thus,
how to guarantee high data reliability in deduplication sys-
tem is a critical problem. Most of the previous deduplication
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systems have only been considered in a single-server set-
ting. However, as lots of deduplication systems and cloud
storage systems are intended by users and applications for
higher reliability, especially in archival storage systems
where data are critical and should be preserved over long
time periods. This requires that the deduplication storage
systems provide reliability comparable to other high-avail-
able systems.

Furthermore, the challenge for data privacy also arises
as more and more sensitive data are being outsourced by
users to cloud. Encryption mechanisms have usually been
utilized to protect the confidentiality before outsourcing
data into cloud. Most commercial storage service pro-
vider are reluctant to apply encryption over the data
because it makes deduplication impossible. The reason is
that the traditional encryption mechanisms, including
public key encryption and symmetric key encryption,
require different users to encrypt their data with their
own keys. As a result, identical data copies of different
users will lead to different ciphertexts. To solve the prob-
lems of confidentiality and deduplication, the notion of
convergent encryption [4] has been proposed and widely
adopted to enforce data confidentiality while realizing
deduplication. However, these systems achieved confi-
dentiality of outsourced data at the cost of decreased
error resilience. Therefore, how to protect both confidenti-
ality and reliability while achieving deduplication in a
cloud storage system is still a challenge.

1.1 Our Contributions

In this paper, we show how to design secure deduplica-
tion systems with higher reliability in cloud computing.
We introduce the distributed cloud storage servers into
deduplication systems to provide better fault tolerance. To
further protect data confidentiality, the secret sharing
technique is utilized, which is also compatible with the
distributed storage systems. In more details, a file is first
split and encoded into fragments by using the technique
of secret sharing, instead of encryption mechanisms. These
shares will be distributed across multiple independent
storage servers. Furthermore, to support deduplication, a
short cryptographic hash value of the content will also be
computed and sent to each storage server as the finger-
print of the fragment stored at each server. Only the data
owner who first uploads the data is required to compute
and distribute such secret shares, while all following users
who own the same data copy do not need to compute and
store these shares any more. To recover data copies, users
must access a minimum number of storage servers
through authentication and obtain the secret shares to
reconstruct the data. In other words, the secret shares of
data will only be accessible by the authorized users who
own the corresponding data copy.

Another distinguishing feature of our proposal is that
data integrity, including tag consistency, can be achieved.
The traditional deduplication methods cannot be directly
extended and applied in distributed and multi-server sys-
tems. To explain further, if the same short value is stored at a
different cloud storage server to support a duplicate check
by using a traditional deduplication method, it cannot resist
the collusion attack launched by multiple servers. In other

words, any of the servers can obtain shares of the data stored
at the other servers with the same short value as proof of
ownership (PoW). Furthermore, the tag consistency, which
was first formalized by [5] to prevent the duplicate/cipher-
text replacement attack, is considered in our protocol. In
more details, it prevents a user from uploading a mali-
ciously-generated ciphertext such that its tag is the same
with another honestly-generated ciphertext. To achieve this,
a deterministic secret sharing method has been formalized
and utilized. To our knowledge, no existing work on secure
deduplication can properly address the reliability and tag
consistency problem in distributed storage systems.

This paper makes the following contributions.

� Four new secure deduplication systems are pro-
posed to provide efficient deduplication with high
reliability for file-level and block-level deduplica-
tion, respectively. The secret splitting technique,
instead of traditional encryption methods, is utilized
to protect data confidentiality. Specifically, data are
split into fragments by using secure secret sharing
schemes and stored at different servers. Our pro-
posed constructions support both file-level and
block-level deduplications.

� Security analysis demonstrates that the proposed
deduplication systems are secure in terms of the def-
initions specified in the proposed security model. In
more details, confidentiality, reliability and integrity
can be achieved in our proposed system. Two kinds
of collusion attacks are considered in our solutions.
These are the collusion attack on the data and the
collusion attack against servers. In particular, the
data remains secure even if the adversary controls a
limited number of storage servers.

� We implement our deduplication systems using the
Ramp secret sharing scheme (RSSS) that enables
high reliability and confidentiality levels. Our evalu-
ation results demonstrate that the new proposed
constructions are efficient and the redundancies are
optimized and comparable with the other storage
system supporting the same level of reliability.

1.2 Organization

This paper is organized as follows. In Section 2, we present
the system model and security requirements of deduplica-
tion. Our constructions are presented in Sections 3 and 4.
The security analysis is given in Section 5. The implementa-
tion and evaluation are shown in Sections 6, and related
work is described in Section 7. Finally, we draw our conclu-
sions in Section 8.

2 PROBLEM FORMULATION

2.1 System Model

This section is devoted to the definitions of the system
model and security threats. Two kinds entities will be
involved in this deduplication system, including the user
and the storage cloud service provider (S-CSP). Both client-
side deduplication and server-side deduplication are sup-
ported in our system to save the bandwidth for data upload-
ing and storage space for data storing.
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� User. The user is an entity that wants to outsource
data storage to the S-CSP and access the data later.
In a storage system supporting deduplication, the
user only uploads unique data but does not upload
any duplicate data to save the upload bandwidth.
Furthermore, the fault tolerance is required by users
in the system to provide higher reliability.

� S-CSP. The S-CSP is an entity that provides the out-
sourcing data storage service for the users. In the
deduplication system, when users own and store the
same content, the S-CSP will only store a single copy
of these files and retain only unique data. A dedupli-
cation technique, on the other hand, can reduce the
storage cost at the server side and save the upload
bandwidth at the user side. For fault tolerance and
confidentiality of data storage, we consider a quo-
rum of S-CSPs, each being an independent entity.
The user data is distributed across multiple S-CSPs.

We deploy our deduplication mechanism in both file
and block levels. Specifically, to upload a file, a user first
performs the file-level duplicate check. If the file is a dupli-
cate, then all its blocks must be duplicates as well, other-
wise, the user further performs the block-level duplicate
check and identifies the unique blocks to be uploaded.
Each data copy (i.e., a file or a block) is associated with a
tag for the duplicate check. All data copies and tags will be
stored in the S-CSP.

2.2 Threat Model and Security Goals

Two types of attackers are considered in our threat
model: (i) An outside attacker, who may obtain some
knowledge of the data copy of interest via public chan-
nels. An outside attacker plays the role of a user that
interacts with the S-CSP; (ii) An inside attacker, who may
have some knowledge of partial data information such as
the ciphertext. An insider attacker is assumed to be hon-
est-but-curious and will follow our protocol, which could
refer to the S-CSPs in our system. Their goal is to extract
useful information from user data. The following security
requirements, including confidentiality, integrity, and reli-
ability are considered in our security model.

Confidentiality. Here, we allow collusion among the S-
CSPs. However, we require that the number of colluded S-
CSPs is not more than a predefined threshold. To this end,
we aim to achieve data confidentiality against collusion
attacks. We require that the data distributed and stored
among the S-CSPs remains secure when they are unpredict-
able (i.e., have high min-entropy), even if the adversary con-
trols a predefined number of S-CSPs. The goal of the
adversary is to retrieve and recover the files that do not
belong to them. This requirement has recently been formal-
ized in [6] and called the privacy against chosen distribution
attack. This also implies that the data is secure against the
adversary who does not own the data.

Integrity. Two kinds of integrity, including tag consis-
tency and message authentication, are involved in the secu-
rity model. Tag consistency check is run by the cloud
storage server during the file uploading phase, which is
used to prevent the duplicate/ciphertext replacement
attack. If any adversary uploads a maliciously-generated

ciphertext such that its tag is the same with another hon-
estly-generated ciphertext, the cloud storage server can
detect this dishonest behavior. Thus, the users do not need
to worry about that their data are replaced and unable to be
decrypted. Message authentication check is run by the
users, which is used to detect if the downloaded and
decrypted data are complete and uncorrupted or not. This
security requirement is introduced to prevent the insider
attack from the cloud storage service providers.

Reliability. The security requirement of reliability in dedu-
plicationmeans that the storage system can provide fault tol-
erance by using the means of redundancy. In more details, in
our system, it can be tolerated even if a certain number of
nodes fail. The system is required to detect and repair cor-
rupted data and provide correct output for the users.

3 THE DISTRIBUTED DEDUPLICATION SYSTEMS

The distributed deduplication systems’ proposed aim is
to reliably store data in the cloud while achieving confi-
dentiality and integrity. Its main goal is to enable dedu-
plication and distributed storage of the data across
multiple storage servers. Instead of encrypting the data
to keep the confidentiality of the data, our new construc-
tions utilize the secret splitting technique to split data
into shards. These shards will then be distributed across
multiple storage servers.

3.1 Building Blocks

Secret sharing scheme. There are two algorithms in a secret
sharing scheme, which are Share and Recover. The secret is
divided and shared by using Share. With enough shares,
the secret can be extracted and recovered with the algorithm
of Recover. In our implementation, we will use the Ramp
secret sharing scheme [7], [8] to secretly split a secret into
shards. Specifically, the ðn; k; rÞ-RSSS (where n > k > r � 0)
generates n shares from a secret so that (i) the secret can be
recovered from any k or more shares, and (ii) no informa-
tion about the secret can be deduced from any r or less
shares. Two algorithms, Share and Recover, are defined in
the ðn; k; rÞ-RSSS.

� Share divides a secret S into ðk� rÞ pieces of equal
size, generates r random pieces of the same size, and
encodes the k pieces using a non-systematic k-of-n
erasure code into n shares of the same size;

� Recover takes any k out of n shares as inputs and
then outputs the original secret S.

It is known that when r ¼ 0, the ðn; k; 0Þ-RSSS becomes the
ðn; kÞ Rabin’s Information Dispersal Algorithm (IDA) [9].
When r ¼ k� 1, the ðn; k; k� 1Þ-RSSS becomes the (n,k)
Shamir’s Secret Sharing Scheme (SSSS) [10].

Tag generation algorithm. In our constructions below, two
kinds of tag generation algorithms are defined, that is,
TagGen and TagGen’. TagGen is the tag generation algo-
rithm that maps the original data copy F and outputs a tag
T ðF Þ. This tag will be generated by the user and applied to
perform the duplicate check with the server. Another tag
generation algorithm TagGen’ takes as input a file F and an
index j and outputs a tag. This tag, generated by users, is
used for the proof of ownership for F .
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Message authentication code. A message authentication
code (MAC) is a short piece of information used to authenti-
cate a message and to provide integrity and authenticity
assurances on the message. In our construction, the message
authentication code is applied to achieve the integrity of the
outsourced stored files. It can be easily constructed with a
keyed (cryptographic) hash function, which takes input as a
secret key and an arbitrary-length file that needs to be
authenticated, and outputs a MAC. Only users with the
same key generating the MAC can verify the correctness of
the MAC value and detect whether the file has been
changed or not.

3.2 The File-Level Distributed Deduplication System

To support efficient duplicate check, tags for each file will
be computed and are sent to S-CSPs. To prevent a collusion
attack launched by the S-CSPs, the tags stored at different
storage servers are computationally independent and differ-
ent. We now elaborate on the details of the construction as
follows.

Systemsetup. In our construction, the number of storage
servers S-CSPs is assumed to be n with identities denoted
by id1; id2; . . . ; idn, respectively. Define the security parame-

ter as 1� and initialize a secret sharing scheme
SS ¼ ðShare;RecoverÞ, and a tag generation algorithm
TagGen. The file storage system for the storage server is set
to be ?.

File upload. To upload a file F , the user interacts with
S-CSPs to perform the deduplication. More precisely,
the user first computes and sends the file tag fF ¼
TagGenðF Þ to S-CSPs for the file duplicate check.

� If a duplicate is found, the user computes and sends
fF;idj

¼ TagGen0ðF; idjÞ to the jth server with iden-

tity idj via the secure channel for 1 � j � n (which
could be implemented by a cryptographic hash func-
tionHjðF Þ related with index j). The reason for intro-
ducing an index j is to prevent the server from
getting the shares of other S-CSPs for the same file or
block, which will be explained in detail in the secu-
rity analysis. If fF;idj

matches the metadata stored

with fF , the user will be provided a pointer for the
shard stored at server idj.

� Otherwise, if no duplicate is found, the user will pro-
ceed as follows. He runs the secret sharing algorithm
SS over F to get fcjg ¼ ShareðF Þ, where cj is the jth
shard of F . He also computes fF;idj

¼ TagGen0ðF; idjÞ,
which serves as the tag for the jth S-CSP. Finally,
the user uploads the set of values ffF ; cj;fF;idj

g
to the S-CSP with identity idj via a secure channel.
The S-CSP stores these values and returns a pointer
back to the user for local storage.

File download. To download a file F , the user first downloads

the secret shares fcjg of the file from k out of n storage serv-

ers. Specifically, the user sends the pointer of F to k out of n
S-CSPs. After gathering enough shares, the user reconstructs

file F by using the algorithm of RecoverðfcjgÞ.
This approach provides fault tolerance and allows the

user to remain accessible even if any limited subsets of stor-
age servers fail.

3.3 The Block-Level Distributed Deduplication
System

In this section, we show how to achieve the fine-grained
block-level distributed deduplication. In a block-level dedu-
plication system, the user also needs to first perform the
file-level deduplication before uploading his file. If no
duplicate is found, the user divides this file into blocks and
performs block-level deduplication. The system setup is the
same as the file-level deduplication system, except the block
size parameter will be defined additionally. Next, we give
the details of the algorithms of File Upload and
File Download.

File upload. To upload a file F , the user first performs the
file-level deduplication by sending fF to the storage servers.
If a duplicate is found, the user will perform the file-level
deduplication, such as that in Section 3.2. Otherwise, if no
duplicate is found, the user performs the block-level dedu-
plication as follows.

He first divides F into a set of fragments fBig (where
i ¼ 1; 2; . . .). For each fragment Bi, the user will perform a
block-level duplicate check by computing fBi

¼
TagGenðBiÞ, where the data processing and duplicate check
of block-level deduplication is the same as that of file-level
deduplication if the file F is replaced with block Bi.

Upon receiving block tags ffBi
g, the server with identity

idj computes a block signal vector sBi
for each i.

� i) If sBi
¼ 1, the user further computes and sends

fBi;j
¼ TagGen0ðBi; jÞ to the S-CSP with identity

idj. If it also matches the corresponding tag stored,
S-CSP returns a block pointer of Bi to the user.
Then, the user keeps the block pointer of Bi and
does not need to upload Bi.

� ii) If sBi
¼ 0, the user runs the secret sharing algo-

rithm SS over Bi and gets fcijg ¼ ShareðBiÞ, where
cij is the jth secret share of Bi. The user also com-
putes fBi;j

for 1 � j � n and uploads the set of val-

ues ffF , fF;idj
, cij, fBi;j

g to the server idj via a secure

channel. The S-CSP returns the corresponding
pointers back to the user.

File download. To download a file F ¼ fBig, the user first
downloads the secret shares fcijg of all the blocks Bi in F

from k out of n S-CSPs. Specifically, the user sends all the
pointers for Bi to k out of n servers. After gathering all the
shares, the user reconstructs all the fragments Bi using the
algorithm of Recoverðf�gÞ and gets the file F ¼ fBig.

4 FURTHER ENHANCEMENT

4.1 Distributed Deduplication System with Tag
Consistency

In this section, we consider how to prevent a duplicate
faking or maliciously-generated ciphertext replacement
attack. A security notion of tag consistency has been for-
malized for this kind of attack [6]. In a deduplication stor-
age system with tag consistency, it requires that no
adversary is able to obtain the same tag from a pair of dif-
ferent messages with a non-negligible probability. This
provides security guarantees against the duplicate faking
attacks in which a message can be undetectably replaced
by a fake one. In the previous related work on reliable
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deduplication over encrypted data, the tag consistency
cannot be achieved as the tag is computed by the data
owner from underlying data files, which cannot be veri-
fied by the storage server. As a result, if the data owner
replaces and uploads another file that is different from
the file corresponding to the tag, the following users who
perform the duplicate check cannot detect this duplicate
faking attack and extract the exact files they want. To
solve this security weakness, [6] suggested to compute
the tag directly from the ciphertext by using a hash func-
tion. This solution obviously prevents the ciphertext
replacement attack because the cloud storage server is
able to compute the tag by itself. However, such a
method is unsuitable for the distributed storage system to
realize the tag consistency. The challenge is that tradi-
tional secret sharing schemes are not deterministic. As a
result, the duplicate check for each share stored in differ-
ent storage servers will not be the same for all users. In
[11], though they mentioned the method of deterministic
secret sharing scheme in the implementation, the tag was
still computed from the whole file or ciphertext, which
means the schemes in [11] cannot achieve the security
against duplicate faking and replacement attacks.

4.1.1 Deterministic Secret Sharing Schemes

We formalize and present two new techniques for the con-
struction of the deterministic secret sharing schemes. For
simplicity, we present an example based on traditional
Shamir’s Secret Sharing scheme. The description of
ðk; nÞ-threshold in Shamir’s secret sharing scheme is as fol-
lows. In the algorithm of Share, given a secret a 2 Zp to be
shared among n users for a prime p, choose at random a
ðk� 1Þ-degree polynomial function fðxÞ ¼ a0 þ a1x þ
a2x

2 þ � � � þ ak�1x
k�1 2 Zp½X� such that a ¼ fð0Þ. The value

of fðiÞ mod p for 1 � i � n is computed as the ith share. In
the algorithm of Recover, Lagrange interpolation is used
to compute a from any valid k shares.

The deterministic version of Shamir’s secret sharing
scheme is similar to the original one, except all the random
coefficients faig are replaced with deterministic values. We
describe two methods to realize the constructions of deter-
ministic secret sharing schemes below.

4.1.2 The First Method

Share. To share a secret a 2 Zp, it chooses at random
a ðk� 1Þ-degree polynomial function fðxÞ ¼ a0 þ a1xþ
a2x

2 þ � � � þ ak�1x
k�1 2 Zp½X� such that a ¼ fð0Þ, ai ¼ HðakiÞ

and p is a prime, where Hð�Þ is a hash function. The value of
fðiÞ mod p for 1 � i � n is computed as the ith share and
distributed to the corresponding owner.

Recover The description of algorithm Recover is the
same with the traditional Shamir’s secret sharing scheme by
using Lagrange interpolation. The secret a can be recovered
from any valid k shares.

For files or blocks unknown to the adversary, these coef-
ficients are also confidential if they are unpredictable. To
show its security, these values can be also viewed as ran-
dom coefficients in the random oracle model. Obviously,
these methods can be also applied to the RSSS to realize
deterministic sharing.

4.1.3 The Second Method

Obviously, the first method of deterministic secret sharing
cannot prevent brute-force attack if the file is predictable.
Thus, we show how to construct another deterministic secret
sharing construction method to prevent the brute-force
attack. Another entity, called key server, is introduced in this
method, who is assumed to be honest and will not collude
with the cloud storage server and other outside attackers.

System setup. Apart from the parameters for the first
deterministic secret sharing scheme, the key server chooses
a key pair ðpk; skÞ which can be initialized as RSA
cryptosystem.

Share. To share a secret a, the user first computes
HðakiÞ for 1 � i � k� 1. Then, he interacts with the key
server in an oblivious way such that the key server gener-
ates a blind signature on each HðakiÞ with the secret key
sk without knowing HðakiÞ. For simplicity, we denote the
signature as si ¼ ’ðHðakiÞ; skÞ, where ’ is a signing algo-
rithm. Finally, the owner of the secret chooses at random a
ðk� 1Þ-degree polynomial function fðxÞ ¼ a0 þ a1x þ
a2x

2 þ � � � þ ak�1x
k�1 2 Zp½X� such that a ¼ fð0Þ and

ai ¼ si. The value of fðiÞ mod p for 1 � i � n is computed
as the ith share and distributed to the corresponding
owner.

Recover. It is the same with the traditional Shamir’s
secret sharing scheme.

In the second construction, the secret key sk is applied to
compute the value of si. Thus, for the cloud storage server
and other outside attackers, they cannot get any useful
information from the short value even if the secret is pre-
dictable [5]. Actually, the signature can be viewed as a pseu-
dorandom function for a.

4.1.4 The Construction of Distributed Deduplication

System with Tag Consistency

We give a generic construction that achieves tag consistency
below.

System setup. This algorithm is similar to the above con-
struction except a deterministic secret sharing scheme
SS ¼ ðShare;RecoverÞ is given.

File upload. To upload a file F , the user first performs
the file-level deduplication. Different from the above
constructions, the user needs to compute the secret shares
fFjg1�j�n of the file by using the Share algorithm. Then,

fFj
¼ TagGenðFjÞ is computed and sent to the jth S-CSP for

each j. It is the same as above if there is a duplicate. Other-
wise, the user performs the block-level deduplication as
follows. Note that each server idj also needs to keep fFj

with the following information of the blocks.
The file F is first divided into a set of fragments fBig

(where i ¼ 1; 2; . . .). For each block, the duplicate check
operation is the same as the file-level check except file F is
replaced with block Bi. Assume that the secret shares are
fBijg for 1 � j � n and corresponding tags are fBij

for block

Bi, where 1 � j � n. The tag fBij
is sent to the the server

with identity idj. A block pointer of Bi from this server is
returned to the user if there is a match. Otherwise, the user
uploads the Bij to the server idj via a secure channel and a
pointer for this block will also be returned back to the user.
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The procedure of the file download is the same as the
previous block-level deduplication scheme in Section 3.3.

In this construction, the security relies on the assump-
tion that there is a secure deterministic secret sharing
scheme.

4.2 Enhanced Deduplication System with Proof
of Ownership

Recently, Halevi [12] pointed out the weakness of the secu-
rity in traditional deduplication systems with only a short
hashing value. Halevi showed a number of attacks that can
lead to data leakage in a storage system supporting client-
side deduplication. To overcome this security issue, they
also presented the concept of proof of ownership to prevent
these attacks. PoW [12] enables users to prove their owner-
ship of data copies to the storage server.

Specifically, PoW is implemented as an interactive algo-
rithm (denoted byPoW) run by a prover (i.e., user) and a ver-
ifier (i.e., storage server). The verifier derives a short tag
value fðF Þ from a data copy F . To prove the ownership of
the data copy F , the prover needs to i) compute and send f0

to the verifier, and ii) present proof to the storage server that
he owns F in an interactive way with respect to f0. The PoW
is successful if f0 ¼ fðF Þ and the proof is correct. The formal
security definition for PoW roughly follows the threat model
in a content distribution network, where an attacker does not
know the entire file, but has accomplices who have the file.
The accomplices follow the “bounded retrieval model” so
they can help the attacker obtain the file, subject to the con-
straint theymust send fewer bits than the initial min-entropy
of the file to the attacker [12]. Thus, we also introduce proof
of ownership techniques in our construction to prevent the
deduplication systems from these attacks.

Furthermore, we also consider how to achieve the integ-
rity of the data stored in each S-CSP by using the message
authentication code. We now show how to integrate PoW
and the message authentication code in our deduplication
systems. The system setup is similar to the scheme in
Section 3.3 except two PoW notions are additionally
involved. We denote them by POWF and POWB, where
POWF is PoW for file-level deduplication and POWB is
PoW for block-level deduplication, respectively.

File upload. To upload a file F , the user performs a file-
level deduplication with the S-CSPs, as in Section 3.3. If a
file duplicate is found, the user will run the PoW protocol
POWF with each S-CSP to prove the file ownership. More
precisely, for the jth server with identity idj, the user first
computes fF;idj

¼ TagGen0ðF; idjÞ and runs the PoW proof

algorithm with respect to fF;idj
. If the proof is passed, the

user will be provided a pointer for the piece of file stored at
jth S-CSP.

Otherwise, if no duplicate is found, the user will proceed
as follows. He first divides F into a set of fragments fBig
(where i ¼ 1; 2; . . .). For each fragment Bi, the user will per-
form a block-level duplicate check, such as the scheme in
Section 3.3.

� If there is a duplicate in S-CSP, the user runs PoWB

on input fBi;j
¼ TagGen0ðBi; idjÞ with the server to

prove that he owns the block Bi. If it is passed, the
server simply returns a block pointer of Bi to the

user. The user then keeps the block pointer of Bi and
does not need to upload Bi.

� Otherwise, the user runs the secret sharing algorithm
SS over Bi and gets fcijg ¼ ShareðBiÞ, where cij is
the jth secret share of Bi. The values of ðcij;fBi;j

Þ
will be uploaded and stored by the jth S-CSP.

Finally, the user also computes the message authentica-
tion code of F asmacF ¼ HðkF ; F Þ, where the keys are com-
puted as kF ¼ H0ðF Þ with a cryptographic hash function
H0ð�Þ. Then, the user runs the secret sharing algorithm SS
over macF as fmfjg ¼ ShareðmacF Þ, where mfj is the jth
secret share of macF . The user uploads the set of values
ffF ;fF;idj

;mfjg to the S-CSP with identity idj via a secure

channel. The server stores these values and returns the cor-
responding pointers back to the user for local storage.

File download. To download a file F , the user first down-
loads the secret shares fcij;mfjg of the file from k out of n
storage servers. Specifically, the user sends all the pointers
for F to k out of n servers. After gathering all the shares, the
user reconstructs file F , macF by using the algorithm of
Recoverðf�gÞ. Then, he verifies the correctness of these tags
to check the integrity of the file stored in S-CSPs.

5 SECURITY ANALYSIS

In this section, we will only give the security analysis for
the distributed deduplication system in Section 4. The
security analysis for the other constructions is similar and
thus omitted here. Some basic cryptographic tools have
been applied into our construction to achieve secure
deduplication. To show the security of this protocol, we
assume that the underlying building blocks are secure,
including the secret sharing scheme and the PoW scheme.
Thus, the security will be analyzed based on the above
security assumptions.

In our constructions, S-CSPs are assumed to follow the pro-
tocols. If the data file has been successfully uploaded and
stored at servers, then the userwho owns the file can convince
the servers based on the correctness of the PoW. Furthermore,
the data is distributedly stored at servers with the secret shar-
ing method. Based on the completeness of the underlying
secret sharing scheme, the file will be recovered by the user
with enough correct shares. The integrity can be also obtained
because the utilization of securemessage authentication code.

Next, we consider the confidentiality against two types of
adversaries. The first type of adversary is defined as dishon-
est users who aims to retrieve files stored at S-CSPs they do
not own. The second type of adversary is defined as a group
of S-CSPs and users. Their goal is to get the useful informa-
tion of file content they do not own individually by launch-
ing the collusion attack. The attacks launched by these
two types of adversaries are denoted by Type-I attack and
Type-II attack, respectively. Because the RSSS is used in our
construction, the different level of confidentiality is achieved
in terms of the parameter r given in the RSSS scheme, which
increases with the number of r. Thus, in the following secu-
rity analysis, we will not explain this furthermore.

5.1 Confidentiality Against a Type-I Attack

This type of adversary tries to convince the S-CSPs with
some auxiliary information to get the content of the file
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stored at S-CSPs. To get one piece of share stored in a S-CSP,
the user needs to perform a correct PoW protocol for the
corresponding share stored at the S-CSP. In this way, if the
adversary wants to get the kth piece of a share he does not
own, he has to convince the kth S-CSP by correctly running
a PoW protocol. However, the user cannot get the auxiliary
value used to perform PoW if he does not own the file.
Thus, based on the security of PoW, the security against a
Type-I attack is easily derived.

5.2 Confidentiality Against a Type-II Attack

As shown in the construction, the data is processed before
being outsourced to cloud servers. A secure secret sharing
scheme has been applied to split each file into pieces,
where each piece is distributedly stored in a S-CSP.
Because the underlying RSSS secret sharing scheme is
semantically secure, the data can not be recovered from
pieces of shares that are less than a predefined threshold
number. This means the confidentiality of the data stored
at the S-CSPs is guaranteed even if some S-CSPs collude.
Note that in the RSSS secret sharing scheme, no informa-
tion will be leaked even if any r of n shares collude.
Thus, the data in our scheme remains secure even if any r
S-CSPs collude.

We also need to consider the security against a colluding
attack for PoW protocol because the adversary may also get
the data if he successfully convinces the S-CSPs with correct
proof in PoW. There are two kinds of PoW utilized in our
constructions. These are block-level and file-level proof of
ownership. Recently, the formal security definition of PoW
was formally given in [12]. However, there was one tradeoff
security definition. This definition relaxes the restriction
that the proof fails unless the accomplices of the adversary
send more than a threshold or more bits to the adversary,
regardless of the file entropy. Next, we will present a secu-
rity analysis of the proposed PoW in distributed deduplica-
tion systems.

Assume there are t S-CSPs that would collude and try to
extract a user’s sensitive file F , where t < k. We will only
present the analysis for file because the security analysis for
block is the same. From this assumption, we can model it by
providing an adversary with a set of tags ffF;idi1

; . . . ;fF;idit
g,

where idi1; . . . ; idit are the identities of the servers. Further-
more, the interactive values in the proof algorithm between
the users and servers with respect to these tags are available
to the adversary. Then, the proof of PoW cannot be passed
to convince a server with respect to another different tag
fF;id� , where id� 62 fidi1; . . . ; idikg. Such a PoW scheme with

a secure proof algorithm can be easily constructed based on
previously known PoW methods. For example, the tag gen-
eration TagGenðF; idiÞ algorithm could be computed from
the independent Merkle-hash tree with the different crypto-
graphic hash function Hið�Þ [12]. Using the proof algorithm
in the PoW scheme with respect to fF;idi

, we can then easily

obtain a secure proof of ownership scheme with the above
security requirement.

Finally, based on such a secure PoW scheme and secure
secret sharing scheme, we can get the following security
result for our distributed deduplication system from the
above analysis.

Theorem 1. The proposed distributed deduplication system
achieves privacy against the chosen distribution attack under
the assumptions that the secret sharing scheme and PoW
scheme are secure.

The security analysis of reliability is simple because of
the utilization of RSSS, which is determined by parameters
of n and k. Based on the RSSS, the data can be recovered
from any k shares. More specifically, this reliability level
depends on n� k.

6 EXPERIMENT

We describe the implementation details of the proposed dis-
tributed deduplication systems in this section. The main
tool for our new deduplication systems is the Ramp secret
sharing scheme [7], [8]. The shares of a file are shared across
multiple cloud storage servers in a secure way.

The efficiency of the proposed distributed systems are
mainly determined by the following three parameters of n,
k, and r in RSSS. In this experiment, we choose 4 KB as the
default data block size, which has been widely adopted for
block-level deduplication systems. We choose the hash
function SHA-256 with an output size of 32 bytes. We
implement the RSSS based on the Jerasure Version 1.2 [13].
We choose the erasure code in the (n; k; r)-RSSS whose
generator matrix is a Cauchy matrix [14] for the data
encoding and decoding. The storage blowup is determined
by the parameters n, k, r. In more details, this value is n

k�r

in theory.
All our experiments were performed on an Intel Xeon

E5530 (2.40 GHz) server with Linux 3.2.0-23-generic OS. In
the deduplication systems, the ðn; k; rÞ-RSSS has been used.
For practice consideration, we test four cases:

� case 1: r ¼ 1; k ¼ 2, and 3 � n � 8 (Fig. 3a);
� case 2: r ¼ 1; k ¼ 3 and 4 � n � 8 (Fig. 3b);
� case 3: r ¼ 2; k ¼ 3, and 4 � n � 8 (Fig. 3c);
� case 4: r ¼ 2; k ¼ 4, and 5 � n � 8 (Fig. 3d).
As shown in Fig. 1, the encoding and decoding times of

our deduplication systems for each block (per 4 KB data
block) are always in the order of microseconds, and hence
are negligible compared to the data transfer performance in
the Internet setting. We can also observe that the encoding
time is higher than the decoding time. The reason for this
result is that the encoding operation always involves all n
shares, while the decoding operation only involves a subset
of k < n shares.

The performance of several basic modules in our con-
structions is tested in our experiment. First, the average
time for generating a hash function with 32-byte output
from a 4 KB data block is 25.196 usec. The average time is
30 ms for generating a hash function with the same output
length from a 4 MB file, which only needs to be computed
by the user for each file.

Next, we focus on the evaluation with respect to some
critical factors in the ðn; k; rÞ-RSSS. First, we evaluate
the efficiency between the computation and the number of
S-CSPs. The results are given in Fig. 2, which shows the
encoding/decoding times versus the number of S-CSPs n.
In this experiment, r is set to be 2 and the reliability level
n� k ¼ 2 are also fixed. From Fig. 2, the encoding time
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increases with the number of n since more shares are
involved in the encoding algorithm.

We also test the relation between the computational time
and the parameter r. More specifically, in Fig. 3, it shows
the encoding/decoding times versus the confidentiality
level r. To realize this test, the number of S-CSPs n ¼ 6 and
the reliability level n� k ¼ 2 are fixed. From the figure, it
can be easily found that the encoding/decoding time
increases with r. Actually, this observation could also be
derived from the theoretical result. If we recall that a secret

is divided into k� r equal-size pieces in the Share function
of the RSSS. As a result, the size of each piece will increase
with the size of r, which increases the encoding/decoding
computational overhead. From this experiment, we can also
conclude it will require much higher computational over-
head in order to achieve higher confidentiality. In Fig. 4, the
relation of the factor of n� k and the computational time is
given, where the number of S-CSPs and the confidentiality
level are fixed as n ¼ 6 and r ¼ 2. From the figure, we can
see that with the increase of n� k, the encoding/decoding
time decreases. The reason for this result is based on the
RSSS, where fewer pieces (i.e., k) will be required with the
increase of n� k.

7 RELATED WORK

Reliable deduplication systems. Data deduplication techniques
are very interesting techniques that are widely employed
for data backup in enterprise environments to minimize net-
work and storage overhead by detecting and eliminating
redundancy among data blocks. There are many deduplica-
tion schemes proposed by the research community. The

Fig. 2. Impact of number of S-CSPs n on encoding/decoding times,
where r ¼ 2 and n� k ¼ 2.

Fig. 3. Impact of confidentiality level r on the encoding/decoding times
where n ¼ 6 and n� k ¼ 2.

Fig. 4. Impact of reliability level n� k on encoding/decoding times,
where n ¼ 6 and r ¼ 2.

Fig. 1. The encoding and decoding time for different RSSS parameters.
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reliability in deduplication has also been addressed by [11],
[15], [16]. However, they only focused on traditional files
without encryption, without considering the reliable dedu-
plication over ciphertext. Li et al. [11] showed how to
achieve reliable key management in deduplication. How-
ever, they did not mention about the application of reliable
deduplication for encrypted files. Later, in [16], they
showed how to extend the method in [11] for the construc-
tion of reliable deduplication for user files. However, all of
these works have not considered and achieved the tag con-
sistency and integrity in the construction.

Convergent encryption. Convergent encryption [4] ensures
data privacy in deduplication. Bellare et al. [6] formalized
this primitive as message-locked encryption, and explored
its application in space-efficient secure outsourced storage.
There are also several implementations of convergent
implementations of different convergent encryption var-
iants for secure deduplication (e.g., [17], [18], [19], [20]). It is
known that some commercial cloud storage providers, such
as Bitcasa, also deploy convergent encryption [6]. Li et al.
[11] addressed the key-management issue in block-level
deduplication by distributing these keys across multiple
servers after encrypting the files. Bellare et al. [5] showed
how to protect data confidentiality by transforming the
predicatable message into a unpredicatable message. In
their system, another third party called the key server
was introduced to generate the file tag for the duplicate
check. Stanek et al. [21] presented a novel encryption
scheme that provided differential security for popular
and unpopular data. For popular data that are not partic-
ularly sensitive, the traditional conventional encryption is
performed. Another two-layered encryption scheme with
stronger security while supporting deduplication was
proposed for unpopular data. In this way, they achieved
better tradeoff between the efficiency and security of the
outsourced data.

Proof of ownership. Harnik et al. [22] presented a number
of attacks that can lead to data leakage in a cloud storage
system supporting client-side deduplication. To prevent
these attacks, Halevi et al. [12] proposed the notion of
“proofs of ownership” for deduplication systems, so that a
client can efficiently prove to the cloud storage server that
he/she owns a file without uploading the file itself. Several
PoW constructions based on the Merkle Hash Tree are pro-
posed [12] to enable client-side deduplication, which
includes the bounded leakage setting. Pietro and Sorniotti
[23] proposed another efficient PoW scheme by choosing
the projection of a file onto some randomly selected bit-posi-
tions as the file proof. Note that all of the above schemes do
not consider data privacy. Recently, Xu et al. [24] presented
a PoW scheme that allows client-side deduplication in a
bounded leakage setting with security in the random oracle
model. Ng et al. [25] extended PoW for encrypted file, but
they did not address how to minimize the key management
overhead.

PoR/PDP. Ateniese et al. [26] introduced the concept of
proof of data possession (PDP). This notion was introduced
to allow a cloud client to verify the integrity of its data out-
sourced to the cloud in a very efficient way. Juels and Kaliski
[27] proposed the concept of proof of retrievability (PoR).
Compared with PDP, PoR allows the cloud client to recover

his outsourced data through the interactive proof with the
server. This scheme was later improved by Shacham and
Waters [28]. The main difference between the two notions is
that PoR uses Error Correction/Erasure Codes to tolerate
the damage to portions of the outsourced data.

8 CONCLUSIONS

We proposed the distributed deduplication systems to
improve the reliability of data while achieving the confi-
dentiality of the users’ outsourced data without an encryp-
tion mechanism. Four constructions were proposed to
support file-level and fine-grained block-level data dedupli-
cation. The security of tag consistency and integrity were
achieved. We implemented our deduplication systems
using the Ramp secret sharing scheme and demonstrated
that it incurs small encoding/decoding overhead compared
to the network transmission overhead in regular upload/
download operations.
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