IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 2, SECOND QUARTER 2018

1397

Detecting and Preventing Cyber
Insider Threats: A Survey

Liu Liu, Olivier De Vel, Qing-Long Han, Senior Member, IEEE, Jun Zhang,

and Yang Xiang

Abstract—Information communications technology systems are
facing an increasing number of cyber security threats, the major-
ity of which are originated by insiders. As insiders reside behind
the enterprise-level security defence mechanisms and often have
privileged access to the network, detecting and preventing insider
threats is a complex and challenging problem. In fact, many
schemes and systems have been proposed to address insider
threats from different perspectives, such as intent, type of threat,
or available audit data source. This survey attempts to line up
these works together with only three most common types of
insider namely traitor, masquerader, and unintentional perpetra-
tor, while reviewing the countermeasures from a data analytics
perspective. Uniquely, this survey takes into account the early
stage threats which may lead to a malicious insider rising up.
When direct and indirect threats are put on the same page,
all the relevant works can be categorised as host, network, or
contextual data-based according to audit data source and each
work is reviewed for its capability against insider threats, how
the information is extracted from the engaged data sources, and
what the decision-making algorithm is. The works are also com-
pared and contrasted. Finally, some issues are raised based on
the observations from the reviewed works and new research gaps
and challenges identified.

Index Terms—Insider threats, data analytics, machine learn-
ing, cyber security.

I. INTRODUCTION

HE DAILY operations of governments, enterprises and
Torganisations rely on networked infrastructures that
interconnect computers and related devices across departments
and networks to facilitate data accessibility and sharing of
computer resources. Protecting such infrastructures from vari-
ous cyber attacks and threats is of paramount importance [1].
According to the Clearswift Insider Threat Index (CITI) annual
report 2015 [2], 92% respondents (organisations) claimed that
they have experienced IT or data security incidents in the
past 12 months and 74% of these breaches were originated
by insiders. Thus addressing threats posed by insiders is
the top priority for achieving full protection of networked
infrastructures.
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Despite almost two decades of research seeking ways to
detect and prevent insider threats, the advancement of mod-
ern networks has quickly outpaced these efforts. As a result,
victims continue to report huge losses because of malicious
insiders. This may be due to one or more of the following
reasons: 1) the existing solutions do not pay enough atten-
tion on the early indications of an arising malicious insider,
most of which do not raise alerts until damaging behaviours
have occurred; 2) most of the solutions rely only on an indi-
vidual audit data source, diminishing insights into the threats;
and 3) conventional data analytics counts too much on domain
knowledge in extracting features or establishing rules, result-
ing in a limited capability against evolving threats. Therefore,
this survey collates the most up-to-date representative schemes
and systems, in an attempt to explore the full trace left by a
malicious insider, highlight the pros and cons of the estab-
lished works, and suggest a research roadmap that may direct
us to a better solution.

In the latest CERT Coordination Centre (CERT/CC) tech-
nical report [3], an insider threat is defined as a malicious
insider who intentionally exploits his or her privileged access
to the organisation’s network, system and data, taking actions
that negatively affect the confidentiality, integrity or availabil-
ity of the organisation’s information and ICT infrastructures.
These insiders were defined as “traitors” in an earlier sur-
vey [4], while the other major type of questionable insiders
were defined as being impersonated by “masqueraders” to
pose a threat to the organisation [4]. In addition, an insider
threat may also be posed by a legitimate user unintention-
ally making a mistake (i.e., “unintentional perpetrator”) [5].
Since a masquerader often penetrates the ICT system using
stolen credentials or a compromised computer that belongs to
a legitimate user, in terms of intent, only traitors themselves
are explicitly malicious. However, it has been well justified
that no matter whether it is deliberate or not, malicious or
unusual behaviour will deviate from normal behavioural pat-
terns [4]. Thus, this survey focuses on all the threats related
to the above-mentioned types of insider without distinguishing
the intents.

According to the literature, the most commonly seen
insider threats are 1) data exfiltration, 2) violations against
data integrity or availability and 3) sabotage of ICT
systems [5], [6]. Technically, traitors and unintentional
perpetrators are able to fulfil these threats straightway. A
masquerader may pose the same threats via an intrusion
campaign that consists of social engineering, eavesdropping
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TABLE I
TYPES OF INSIDER AND RELEVANT THREATS

Type of insider Kill chain Threat
Port scan
Reconnaissance Network vulnerability scan
Web application vulnerability scan
database vulnerability scan
Weaponisation Social engineering
Email spam (URL or attachments)
Delivery Malicious or phishing websites
Masquerader Removable media
Exploit Privilege escalation
Install RAT or backdoor
DDoS
C2 Email spam
Click fraud and bitcoin mining
Data exfiltration
Traitor Actions on objectives | Violation against data integrity or availability
Unintentional perpetrator Sabotage of ICT systems

and packet sniffing, malware delivery and installation, and
etc. [4]. Since the advanced persistent threat (APT) intrusion
kill chain [7] represents a latest intrusion campaign paradigm,
it is employed in this survey as a taxonomy to accommodate
the early-stage threats posed during the incubation period of
a masquerader. In particular, an intrusion kill chain is defined
as a systematic process to target and engage an attacker by
creating desired effects which, in the context of APT, involves
seven phases, namely reconnaissance, weaponisation, deliv-
ery, exploitation, installation, command and control (C2) and
actions on objectives [7]. Such a kill chain actually enables
this survey to look at typical insider threats and the early-
stage threats on the same page. We propose that if any of
these threats can be addressed, it has successfully prevented
an insider who is committing a violation and thus, we regard
the two categories both as insider threats without distinction
in the following text. Table I summarises the types of insider
and all the relevant threats.

Audit data source plays a significant role in determin-
ing the capability, effectiveness and efficiency of a proposed
scheme. Without an appropriate audit data source, one can not
expect a valid outcome no matter what analytical technique
is adopted. As such, this survey reviews the countermea-
sures in terms of the engaged data sources. Host-based and
network-based are traditionally the most popular two cate-
gories of data source in designing an anomaly-based intrusion
detection system (IDS) [8]. Typical host-based data sources
include system calls, Unix shell commands, keyboard and
mouse dynamics, and various host logs to which a behavioural
analysis of programs, users or hosts is applicable. Network
traffic and logs are the most common examples of a network-
based data source, from which information can be extracted to
modelling the networking behaviours of any users [9], hosts,
IP addresses, TCP flows and so forth. Except for the above
two categories, contextual data sources are considered as the
third category in this survey, which are meant to provide con-
textual information such as the human resources (HR) and

psychological data in regard of a human user. Contextual data
sources have shown great potential in conducting intent anal-
ysis and validating the suspicious behaviours reported by a
conventional analytics [10], [11]. In line with the three cate-
gories of data source, this survey will look into a large number
of the existing schemes and systems, particularly concern-
ing the capability against insider threats, how the features
or useful information are extracted from the employed data
sources, the modelling approach and the specific decision-
making algorithm. Furthermore, for each category of data
source, we give a short review comparing and contrasting the
relevant works from a technical perspective such as the pros
and cons of the modelling approaches and decision-making
algorithms used.

Salem’s survey [4] might be the earliest one that focuses
specifically on detecting insider attacks. In that survey, mali-
cious insiders are categorised into traitors and masqueraders,
and some insider threats are loosely exemplified without
a systematic view. Moreover, its most pages are spent in
reviewing the schemes regarding host-based user profiling.
Hence, in terms of both depth and breadth, it can only be
regarded as a partial reference for the state-of-the-art research
of detecting and preventing insider threats. CERT’s techni-
cal reports [3], [6] deeply investigate the indicators an insider
threat may have expressed and suggest a series of practices
which are essential for mitigating insider threats. They are use-
ful guides and handbooks for organisational decision makers
but do not really fill the gap with sufficient academic materials
derived. Therefore, we are motivated to complete a new sur-
vey aiming to provide more comprehensive insights into this
research from a technical perspective. Particularly, this survey
makes the following contributions:

o It identifies three types of insider and deals with each

type in the same way by ignoring intent.

o Conventional insider threats and some other relevant

early-stage threats are put on the same page using the
APT intrusion kill chain.
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Fig. 1. Taxonomy of the Insider Types and Specific Insider Threats.

o A large number of recent works are organised in terms of
data source, each of which is presented particularly from
a data analytics perspective,

« Contextual data-based analytics is recognised as a promis-
ing new technical category, with some representative
works reviewed.

o Some critical research challenges are identified.

This survey is organised as follows. Section II intro-
duces the insider threats according to the types of insider.
Sections III to V detail host, network and contextual data-
based analytics respectively, each of which also comes with
a brief introduction to the common data sources and a tech-
nical summary. Section VI discusses some observations from
the reviewed works and identifies some important research
challenges. Finally, Section VII concludes this work.

II. TYPES OF INSIDER AND RELEVANT THREATS

In this section, we introduce the types of insider and what
threats they can pose, by gathering and recompiling the materi-
als obtained from the literature. The APT intrusion kill chain is
employed to arrange all the threats from early to late stages. In
the meantime, this section provides the details about vulnera-
bilities of current systems to the threats, typical attack vectors
and how a victim can be exploited. Figure 1 illustrates the
types of insider and relevant threats.

We assume that in most cases, a masquerader is an outside
attacker penetrating the system via the kill chain. A pene-
tration normally begins with ‘reconnaissance’, during which
the attacker is gathering the targeted victim’s information by
various means for use in a future attack [12]. Essentially,
this phase is aimed at exploring the victim environment’s
computer systems, networks and applications for vulnerabil-
ities [13], which often relies on the following means, i.e.,
port scanning [14], network vulnerability scanning [15], Web
application vulnerability scanning [16], database vulnerability
scanning [17] and etc. The second phase ‘weaponisation’ is
conducted quietly on the attacker side without any interaction
with the victim environment. By leveraging the knowledge
learnt from the former phase and social engineering [18], the

bitcoin mining

attacker creates a weaponised deliverable coupled with mali-
cious payloads such as remote access trojans (RAT) [19],
rootkit backdoors [20] and keyloggers [21]. However, at this
time, the attacker still remains outside the victim environment,
leaving no footprints in the audit data. As this survey focuses
primarily on dealing with insider threats from a data analytics
perspective, we ignore the early two phases.

The attacker really start engaging the victim environment
by launching the ‘delivery’ phase. Social engineering based
phishing is the most common means that delivers the mal-
ware into the victim’s host; for example, the victim may
receive an unsolicited email with URLs redirecting to mali-
cious Web sites and/or attachments such as executable binary,
PDF and MS Office document coupled with malicious pay-
load [22], [23]. Alternatively, the victim may be directly
tempted to visit a malicious website when surfing the Internet.
No matter how it is being deceived, once landing to a mali-
cious website, the malware will be silently delivered to the
victim’s host [24], [25]. Removable media such as USB thumb
drives and USB mass storage devices is a relatively clumsy
means to deliver the malware but still pervasively danger-
ous [26], [27], which usually infects the victim’s host through
a featured malicious ‘autorun’ payload [28].

The weapon delivered to the victim’s host will be self-
executed and, by exploiting the vulnerabilities of the operating
system and/or the applications, it installs the malware to keep
a door open for the attacker. These actions correspond to the
two phases ‘exploitation’ and ‘installation’. To be more spe-
cific, an exploit is a sequence of operations varying according
to underlying hardware, operating systems and applications
but its fundamental objective is always the same: gaining con-
trol over the victim’s host through escalation of privilege and
then attempting to steal credentials and install the RAT or
backdoor. A general example is that an exploitation takes
advantage of a certain known or unknown (zero-day [29])
vulnerability to launch a buffer overflow attack. With the esca-
lated privilege, the attacker can choose to act on the victim
environment immediately such as accessing or damaging sen-
sitive data [30], [31]) or, quietly install and propagate the
malware [32].
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In order to maintain the threat persistently, the attacker
keeps communicating with the compromised host (i.e., bot)
via a C2 channel [33]. The C2 channel is established by
the installed RAT or backdoor, which allows the attacker to
instruct the bot to perform some desired operations. When
there are a number of hosts turned into bots, they can be
organised as a botnet in an ad-hoc manner, operating in either a
Client-server (CS) or a peer-to-peer (P2P) model. A CS model
based botnet can frequently change its server’s IP address by
subscribing to a dynamic Domain Name System (DDNS) ser-
vice to avoid detection [34], [35]. In contrast, without relying
on a centralised server, a P2P model based botnet is harder
to be detected and eliminated, since in such a network each
node acts as bot master and bot client at the same time and
it can still work properly even if some of the nodes have
been taken down [36], [37]. Some destructive attacks may
be implemented straightforwardly through a botnet, such as
Distributed Denial-of-Service (DDoS) that disrupts the vic-
tims’ network by incoming traffic flooding [38], [39] and email
spam that dumps a numerous number of unwanted, adver-
tising or malicious emails into the victim environment [40].
Alternatively, an attacker may exploit the bots’ resources for
running a profitable business, such as click fraud [41] and
Bitcoin mining [42].

Then, we look at the threats that arise when an outside
attacker has morphed into a malicious insider. The last phase
is referred to as ‘actions on objectives’ in the kill chain, indi-
cating that the masquerader has accomplished the first six
phases and now can take actions to achieve the original objec-
tives [7]. Since traitors and unintentional perpetrators reside
internally, they can pose the same threats without having to
walk through the intrusion campaign. Generally, data exfil-
tration is the most dangerous threat, which can be formally
defined as “unauthorised copying, transferring, or retrieving
of data from a computer or server” [3]. In practice, its actions
exist in various forms such as 1) unauthorised access to or use
of corporate information, 2) unintentional exposure of private
or sensitive data and 3) theft of intellectual property (IP) [6].
Sometimes, traitors and unintentional perpetrators are allowed
to take these bad actions immediately; for example, they can
browse, search, download and print documents which they are
not authorised to access or do not need to access, and trans-
fer protected data outside using removable media [43], cloud
boxes [44], [45] or email attachments [31], [43]. In contrast,
due to the nature of remote control, masqueraders may have to
operate in a more sophisticated manner; for example, they may
collect only critical information about the compromised host
and the victim’s personal activities, e.g., operating system ver-
sion, enabled ports, password and credit card information [46],
which then can be sold as information asset or used as a bridge
for lateral movement [7], [31], [32]. Violation of data integrity
or availability is the second major threat posed to a victim
environment. The definition of such a threat can be described
as “disappearance or damage in which a correct data copy is
no longer available to the organisation” [47]. Known actions
relating to this threat include: 1) changing file extensions to
confuse users, 2) enciphering/deciphering sensitive data [31],
and 3) tampering with files [43]. Ransomeware [48] is a more
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realistic example, which penetrates into a victim host, encrypts
the data and demands payment for decryption. This is a typical
violation of data availability. The attacker is also able to pose
a threat of sabotage of the ICT system, which is defined as “an
insider’s use of ICT to direct specific harm at an organisation
or an individual [6]”. For example, as previously mentioned,
the masquerader can operate the P2P model based botnet to
launch a DDoS attack from the inside against the victim ICT
system [38], resulting in a much more serious consequence
than ordinary DoS attacks [49].

III. HOST-BASED ANALYTICS

In this survey, as shown in Figure 2, there are three cate-
gories of data source being taken into consideration: 1) host,
2) network, and 3) contextual. This section will focus on
host-based analytics.

Host-based analytics are working with data collected from
each individual host (computer), ranging from operating
system low-level data such as system calls to application-level
data such as shell command lines, keystroke/mouse dynamics,
*nix syslog, Windows event log and etc. These data sources
are able to reflect how a host behaves and the human user’s
interactive behaviour with the host. As such, they can find
wide applications in addressing insider threats.

A system call is made when a computer program requests
a service from the kernel of the operating system where
these services are primarily provided to manage and access
a computer’s hardware or kernel-level resources such as CPU,
memory, storage, network and process [50]. There are many
different ways to collect system calls, such as the *nix oper-
ating systems’ built-in Auditing System (auditd daemon) or
stracelptrace programs. By working on different programs,
the captured system calls can be analysed to identify a broad
range of cyber security threats. For example, analysis of how a
privileged process is being executed has been proven effective
against intrusions [51], [52] and malware [31]. Additionally,
investigation of system calls that are specific to file operation
is capable of uncovering a malicious insider who is attempting
to access protected data [53].

Commands and keystroke/mouse dynamics are more con-
cerned with how a user is operating the host. The com-
mands usually exist in the form of a sequence while the
keystroke/mouse dynamics need a specialised model to char-
acterise their features [54]. Collection of a user’s input data
may not be easy due to privacy concerns, relying on whether
the built-in command logger [55] or a third-party com-
mand/keystroke/mouse recorder [56], [57] is available on the
targeted host. Since this category of data sources contain
information that enables identifying genuine users from a
behavioural biometrics’ perspective, they are best suited for
detecting masqueraders.

Operating system’s built-in logging capability can be lever-
aged to record a variety of system events such as authen-
tication, system daemon catch-all, kernel messages, process,
policy change and etc. According to the type of operating
system, in practice they are called *nix syslog and Windows
event log respectively. Although sometimes such a log is
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Fig. 2. Data sources and analytics.

verbose due to a large number of duplicated entries, the infor-
mation contained may still be worth examining. For example,
an unusually long sequence of authentication failures may
indicate a brute-force password attack. However, due to the
extreme redundancy and complexity, raw logs are indeed not
very effective to reflect indications of compromise. One pos-
sible solution is to spend some effort in processing raw logs
and extracting features for addressing a certain type of cyber
security threat. Instead, it is also possible to reengineer the
logging capability to collect only the information specific to
the targeted threats; for example, aiming at malicious insid-
ers, the RUU (“are you you?”) logger is tailored to merely
look after process, registry and file operation-related system
events [58].

A. System Calls

System call is the channel that a program communicates
with the kernel of the operating system. It has been extensively
analysed for detecting intrusions, malware and insider threats.
The following example represents a subsequence of system
call captured from a sendmail program.

open, read,
getrlimit,

remap,
remap,

remap,
close

open,

Most of the existing schemes are working on such sequences
of system call, while a few have looked deeper into the param-
eters of a system call. In regard of sequences of system call,
there are two common technical categories: 1) sequence-based

that constructs n-grams from a sequence and applies differ-
ent models to analyse the n-grams and, 2) frequency-based
that transforms the sequences into equal-length frequency
vectors to which, then, statistical or machine learning algo-
rithms are applied. Apart from statistical and machine learning
algorithms, sequence, rule-based, graph-based and deep learn-
ing algorithms also have found applications in dealing with
system calls. The following paragraphs will introduce some
representative schemes in detail.

Analysis of system call is pioneered by Forrest and Hofmeyr
in the 1990s [51], [69]. For the purpose of intrusion detection,
the early schemes such as the ‘lookahead’ [51] and its refined
variant [52] focus primarily on the sequences of system call
that reflect a certain privileged process (e.g., sendmail and ftp).
When a baseline database (i.e., a set of n-grams) is built using
a fixed size window (i.e., n) sliding across a set of normal
sequences, the n-grams obtained from a testing sequence are
compared with the database contents, revealing an anomaly
if the percentage of mismatch is beyond a defined thresh-
old. Considering that a malicious payload only impacts on a
small section of the sequence, the refined ‘lookahead’ simply
counts mismatches within a suspicious subset of the testing
sequence, leading to a lower computational complexity. Since
the Markov chains and Hidden Markov Models (HMMs) are
able to characterise the sequence of state (system call) transi-
tions more accurately, they are better alternatives to the early
schemes [59], [60], in which cases the joint probabilities of
the n-grams are usually employed as a metric of abnormal-
ity. Artificial neural network (ANN)-based schemes [61], [62]
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TABLE 1T
TAXONOMY OF SYSTEM CALL BASED ANALYTICS

Threat type Model Tech category Algorithm Data source
n-gram statistical sequence match [51] [52]
n-gram statistical Markov [59] [60]
n-gram machine learning | feedforward neural network [61] [62]
Intrusion & malware n-gram deep learning recurrent neural network (RNN) [63] System call sequence
frequency | statistical LLRT, LR [64]
machine learning | kNN [65] [66]
frequency | machine learning | kMC [67]
machine learning | SVM [68] [64]
Insider threats rule signature match [30] System call parameter
graph minimum description length (MDL) [53]

are even more accurate because of ANN’s strong ability
to discover non-linear correlations between inputs (n-grams)
and outputs (normal or anomalous). Recently, deep learning
(ANN'’s rebranded descendant)-based scheme has also came
out, which applies a higher number of diverse hidden layers
to extract features from the n-grams [63]. However, neural
network family’s advantage in accuracy comes with a largely
increased computational cost and its effectiveness has not been
proven for unsupervised learning which is a more common
case in practice.

Apart from the n-gram-based schemes, the other schemes
tend to analyse a system call based on its frequency. In particu-
lar, a sequence of system call is transformed into a fixed-length
frequency vector according to the occurrence number of every
individual system call. Subsequently, various classification
algorithms such as the k-nearest neighbour (kNN) [65], [66],
k-means clustering (kMC) [67] and support vector machine
(SVM) [68] can be applied to differentiate an anomalous
frequency vector from the known normal ones using a met-
ric of similarity (or distance). Canzanese et al. [64] propose
a more complex scheme that combines multiple detectors
together for detecting a malicious process. This scheme con-
structs both ordered and unordered 2-grams from a sequence
and adopt the inverse document frequency (TF-IDF) statis-
tics to fabricate the frequency vector. Then, four algorithms
signature-based, multinomial log-likelihood ratio test (LLRT),
SVM and logistic regression (LR) are implemented in making
a decision.

System call-based analytical techniques have also shown
great potential in dealing with insider threats. For example, an
analysis of system calls relating to file systems and processes
is able to address data exfiltration [30]. In particular, the cited
scheme is modelling the daily behaviour of accessing files
and directory for users and processes respectively. If there
is an access to a certain file system location more frequent
than an expected range indicated by the model or to an unau-
thorised location, an anomaly is reported. In the meantime,
it reconstructs each process’s execution during an extended
period as a process tree, according to which once a process
forks a child or executes a program that is not on the autho-
rised list or its process tree is largely inconsistent with the
baseline, an anomaly is reported too. Liu ef al. [31] assesses
the ways of feature representation in detail, which include

n-grams, histograms and parameters. A data set is synthe-
sised with samples affected by typical insider threats such
as privilege escalation, malware installation, data exfiltration
and violation against data availability. Representations of n-
grams and histograms in this case are actually corresponding
to the above-mentioned n-gram and frequency models which
substantially investigate a system call’s sequential informa-
tion, while representation of parameter is attempting to retrieve
information about a system call’s parameters and return code.
This assessment concludes that representation of parameters is
among the most sensitive way. A graph-based scheme is also
proposed to cope with insider threats [53], which is motivated
by the observation that some system calls are related directly
to a user’s logon/off and file operations such as exec, execve,
time, login, logout, su, rsh, rexecd, passwd, rexd and ftp. The
graph-based anomaly detection (GBAD) algorithms are imple-
mented to create multiple models (normative structures) for a
chunk of system calls and their parameters which, finally, con-
stitute an ensemble to detect subsequent chunks in a streaming
manner. During each iteration, a chunk is tested with all the
models and a weighted majority voting mechanism is applied
to make a decision and, then, the least weighted model is
replaced with the new model.

We summarise the taxonomy of system call-based analyt-
ics (as shown in Table II) and provide some suggestions. The
n-gram based techniques make good use of the temporal corre-
lation appearing in a system call sequence, which evolve from
the old-fashioned ‘lookahead’ to the Markov models charac-
terising state transitions probabilistically and then to the ANNs
that deeply exploit the non-linearity. However, apparently, such
an evolution comes with consistently increasing computational
complexity. The frequency based techniques, on the other
hand, are highly scalable but perform well only in a limited
number of cases where the majority of the sequence have to
be affected by a malicious behaviour. Therefore, they are only
considered useful for a quick and coarse analysis. A mix of the
two models may achieve a better balance between scalability
and effectiveness, which has been discussed in [64]. It is nat-
ural to think of that analysis of system calls that reflects user
behaviours or critical system activities will yield a capabil-
ity of addressing insider threats. This has been experimentally
validated in [31] which also points out that to reach an accept-
able performance it needs additional information such as a



LIU et al.: DETECTING AND PREVENTING CYBER INSIDER THREATS: SURVEY

system call’s parameters (input) and return codes (output). For
examples, an access to a sensitive file or directory, a call to
a prohibited system call and a creation of an unusual child
process are more important in revealing malicious behaviours
than a sequence of system call itself. The limitations of system
call-based analytics are very evident: 1) system calls only
exist in a *nix operating system and their counterparts in
Windows operating systems are not available yet (DLLs seem
to be a potential solution [70]); and 2) a system call reflects
a behaviour at the kernel level, suggesting that a significant
amount of effort is required to retrieve information.

B. Command, Keyboard and Mouse

In terms of behavioural biometrics, the *nix shell com-
mand has been proven very effective in characterising a user’s
behaviour [82], [83] and, thus, it finds many applications for
detecting masqueraders. The following text illustrates what a
sequence of command may look like.

pwd, 1ls, cd, 1ls, cd, 1ls, cd, cp, rm

Meanwhile, this example has indicated a potentially mali-
cious behaviour that a user copies some data and delete.
Since *nix shell command and system call have some proper-
ties in common, some system call-based analytical techniques
are reused immediately. But, more generally, the schemes are
operated within a user-profiling framework, namely: a user
profile is learnt from the historical commands in the form of
a sequence according to which it predicts whether a sequence
of commands is executed by the same user or not. Technically
speaking, statistical and machine learning algorithms are still
most used although a few others can be seen as well.

The earliest scheme is proposed by Lane and Brodley [71].
Since a fact has been noticed that human users exhibit greater
variability than computer programs, in order to gain stronger
sensitivity to locally successive matches, this scheme modifies
the ‘lookhead’ scheme [51] with a numeric metric of similar-
ity designed to replace the binary true/false metric. Further,
this scheme’s data storage capacity is optimised by using the
least-recently-used (LRU) pruning strategy and greedy clus-
tering algorithm [72]. The former helps to eliminate those
less-used sequences in a user profile, while the latter parti-
tions the sequences into clusters which enables computation
of similarity to be counted only on cluster centroids (thus,
less memory is required). Coull et al. [73] propose a similar
scheme that employs the length of the longest common subse-
quence between two subsequences of command as the metric
of similarity. Specifically, a semi-global alignment algorithm
is applied to yield the anomalous score for a test sequence,
where the scoring mechanism is meant to penalise the number
of gaps having to be filled to reach alignment.

Apparently, the above schemes are analogous to the n-gram
model except for the use of a fixed size window instead
of a sliding window. Therefore, we rename it as sequence
model to maintain the generality. The schemes cited below
can be regarded as representatives of the frequency model. The
first two schemes quantify the abnormality with the Hellinger

1403

distance, in which each subsequence of command is trans-
formed into a binary vector according to whether a command
occurs historically or not and the one-class SVM classifies the
anomalous subsequences [79], [80]. From the user-profiling
perspective, a scheme is proposed with the fuzzy concept
engaged [81], where a fuzzy user profile is established based
on the frequency vector of a subsequence of command. In
detail, multiple local user profiles are made to precisely reflect
this user’s daily behaviour and the periodicity. The fuzzy
user profile is simply the combination of all the local ones.
When referring to the fuzzy user profile, a ‘likelihood’ can be
assigned to a test command in terms of a membership func-
tion and, accordingly, a test sequence’s abnormality will be
determined by averaging the likelihoods.

Statistical is the other major technical category for analysing
commands. For instance, DuMouchel et al. [74], [75] attempt
to represent a user profile with a one-step transition matrix
regarding the executed commands, where detection begins
with a null hypothesis stating that a test sequence of
command is generated by the same user. These schemes
in particular work on every 100 commands (i.e., window
size=100), based on Fisher’s score [74] and Bayes factor
test statistics [75] respectively. As reported by [76], repre-
senting a user profile with a high-order Markov chain and
its implicative mixture transition distribution (MTD) is able
to reflect the transition dynamics more accurately, because
of the MTD combining contributions linearly from multiple
past steps. When the MTD’s parameters are estimated with
the Expectation-Maximisationn (EM) algorithm, a likelihood-
ratio test is implemented in accepting or rejecting the null
hypothesis (same as above). Other than statistical hypothesis
testing, Schonlau and Theus designs a simpler test statis-
tics [77] that measures how a test sequence is different
from the expected behaviour based on command’s unique-
ness and popularity. Using the naive Bayes classification,
Maxion and Townsend [78] propose a scheme to assign poste-
rior probabilities to every test command in terms of this user’s
and others’ historical data respectively which, then, determines
whether a sequence comes from this user or not by examining
the cumulative posterior probabilities.

Although not very popular, keyboard and mouse dynamics is
also a valid data source for conducting analysis of behavioural
biometrics. The best example is the scheme proposed by
Ahmed and Traore in 2005 [54], which creates a user pro-
file with features extracted from the dynamic behaviour. The
dwell time and flight time are key features for characteris-
ing keystroke dynamics, which are known to be very unique
for every individual. In regard of mouse dynamics, the aver-
age speed against travel distance and movement direction are
worked out as the features. An ANN is trained with these
features, according to which any inconsistent dynamics will
indicate the existence of a masquerader.

Table III shows the taxonomy of command, keyboard and
mouse-based analytics. Some techniques derived from system
call-based analytics are still applicable but, due to greater vari-
ability in human behaviour, the proposed schemes tend more to
seek a statistical solution. It is apparent that system call-based
analytics have a wider range of applications in addressing
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TABLE III
TAXONOMY OF COMMAND, KEYBOARD AND MOUSE BASED ANALYTICS

Threat type Model Tech category Algorithm Data source
sequence match [71] [72]
sequence alignment [73]
Fisher’s score test [74]
sequence statistical Bayes factor test [75]
LRT command sequence
Insider threats [7§] - !
test statistics [77]
machine learning | naive Bayes classifier [78]
machine learning | SVM [79] [80]
frequency
fuzzy fuzzy user profile [81]
machine learning | ANN [54] keyboard and mouse dynamics

cyber security threats as they can look into any computer
programs’ (or processes’) behaviour at the kernel level. For
instance, investigating file operation-related processes is able
to address data exfiltration and, analysis of some critical
system processes that are known to be vulnerable can help
to prevent and detect privilege escalation. Variability is also
a noticeable difference between system calls and commands.
That is, a sequence of command is often collected for a user on
a daily logon/off basis whereas a sequence of system call can
only be collected during discrete time periods for a process
and, hence, the latter is normally less varied. Moreover, a pro-
cess generally executes along a predefined routine, resulting
in every two successive system calls being heavily dependent
on each other. The above two differences have potentially
explained why system calls can be handled with a sliding
window but a fixed size window is preferred to commands:
temporal correlation is essential in dealing with a sequence
of system call but modelling accuracy is the key to success
in analysing a sequence of command. Although command-
based analytical techniques are sometimes interchangeable
with system-call based analytics, their limitations are unique:
1) they have to face the difficulty in data collection when more
and more user operations are accomplished via a graphic user
interface (GUI) rather than a command-line interface (CLI);
and 2) keyboard and mouse dynamics seem to be promising
and are generally available in modern operating systems but
data collection is still challenging.

C. Host Logs

Operating system’s logging capability allows to record any
events either occur in an operating system or other soft-
ware/programs run, or messages communicated between dif-
ferent users. They have provided rich data sources for auditing
and tracing a host’s behaviour and, therefore, are quite suitable
for detecting intrusions, malware and malicious insiders. Due
to the complexity and redundancy in retrieving useful infor-
mation from these data sources, they are not yet made use as
commonly as the above-mentioned data sources. Furthermore,
there is not a common model like n-gram (sequence) or
frequency available for analysing host logs. From an algo-
rithm perspective, statistical and machine learning algorithms
have found most use cases.

A scheme is proposed to detect intrusions [84] with
multiple detectors handling features extracted from Windows
performance monitor logs on a one-on-one basis. Each detec-
tor fits data with a distribution chosen from a predefined
set of candidates such as Gaussian, Erlang, Exponential and
Uniform, from which the probability is drawn for a test data
instance. When this probability is compared with those drawn
from the peer hosts, a significantly deviated one will indicate
an intrusion. A final decision is made with a weighted-majority
vote mechanism. In the meantime, the detector is tuned incre-
mentally with a labelled data set, which lowers a detector’s
weight if a false alert is given. Finally, for each host, a ready-
to-use ensemble is released which has phased out all the trivial
features.

Berlin et al. [85] attempt to detect malware using standard
Windows audit logs. The data collector is configured to capture
all the events regarding file/registry’s writes, deletes and exe-
cutes, and process spawned. After all the events are grouped
by process IDs, each process is modelled with its n-grams, all
of which are then aggregated into one feature vector that repre-
sents the entire raw log. When all the raw logs are transformed
into feature vectors, a LR classifier is trained to identify a
malicious feature vector.

Relying on a Windows-specific sensor (e.g., RUU) that
collects critical system events such as process creations, reg-
istry key changes and file system operations, a behavioural
biometrics-motivated scheme is proposed to prevent masquer-
aders and detect malicious insiders [58]. A total of 18 features
are extracted from collected events for characterising a user’s
behaviour such as the numbers of unique processes, registry
key queries and files accessed. These features’ discrimina-
tive capability are assessed via the scalar Fisher’s method and
Fisher Linear Discriminant (FLD) which in essence are exam-
ining each feature’s within-class and between-class variance.
The Gaussian mixture model (GMM), SVM and kernel density
estimation (KDE) are all experimented with a few of the most
significant features which, finally, concludes that the GMM
outperforms the others.

The taxonomy of host log-based analytics is summarised in
Table I'V. Since host logs are not easy to collect and in general
redundant and very massive, this category of techniques are not
thriving yet. However, they are uniquely able to look into data
at a higher application level which have provided a concise
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TABLE IV
TAXONOMY OF HOST LOG BASED ANALYTICS

Threat type Model Tech category Algorithm Data source
Intrusion statistical ensemble [84] Win performance monitor logs
Malware n-gram | statistical LR [85] Win audit logs
statistical MM, KDE
Insider threats statis .1ca - G ’ [58] Win system logs
machine learning | SVM [58]

and efficient way of characterising a host or user’s behaviour.
At the same time, host log-based analytics have not to be
restricted in *nix operating systems due to data collection.
Except for syslog that is available in *nix operating systems,
Windows event log can offer the same information in Windows
operating systems. The information redundancy existed in host
logs is still the major issue that prevents host-based analytics to
be applied more widely, because the process of data cleansing
and information retrieving is extremely time consuming.

IV. NETWORK-BASED ANALYTICS

Network core equipments such as routers, switches, load
balancers and firewalls all have the ability to collect the
network traffic passing through which, traditionally, are con-
sidered the major audit data sources for detecting intru-
sions [86]-[91]. Besides, functioning servers deployed in a
network such as Proxy, DHCP, DNS, Active Directory (AD)
and Email can be configured with their built-in logging capa-
bility to produce additional audit data sources in the form of
logs. Some works have identified such network logs’ great
potential for addressing insider threats [92]-[94]. Intuitively,
network logs are more application-specific, adept at character-
ising how users or hosts behave in a network in terms of a
certain service(application), while network traffic provides a
wider range of information at a lower network/transport layer.

By definition, network traffic is the data moving across a
network at a given point of time and, in computer networks,
are mostly encapsulated in packets [95]. There are three
major technical categories of data acquisition in the context of
network traffic [96]: 1) NetFlow, such as “Cisco NetFlow" and
“sFlow", 2) Simple Network Management Protocol (SNMP),
such as “MRTG” and “Cricket”, and 3) packet sniffers, such as
“snoop”” and “tcpdump”. In theory, all network behaviours and
communication patterns can be reconstructed from network
traffic, by parsing different packet header fields such as source
and destination IP addresses, protocol, source and destination
port, and bytes. Some of the relevant analytical techniques
can be utilised to deal with cyber security threats immedi-
ately. For example, when modelling the sequence of traffic
volumes occurred between two entities (e.g., a host and a
domain name) as a time series, regression analysis is a power-
ful tool to identify an anomalous volume which, in reality, is
deviated significantly from its expected value [97]. Secondly,
conducting a periodicity analysis of communication patterns
between a host and a domain name is able to indicate the
existence of a beaconing behaviour [98]. Thirdly, unusual or
malicious user/host activities are detectable via connectivity
analysis [99]. An exemplified application scenario is that a

user/host is reported if it connects to many suspicious IP
addresses or does not connect to a destination that is supposed.

In some cases, network logs serve as alternative data sources
to network traffic. A specific type of network log often repre-
sents only a certain application layer protocol or functionality.
For example, AD logs collected from a Windows domain
controller record only the events regarding user logon/off, per-
mission check and etc. Thus, network logs are generally more
formatted and structured, requiring less effort for information
retrieval. Furthermore, most network traffic-based analytical
techniques can be reapplied to analyse network logs with a
little modification. Overall, network log-based analytics are
playing an increasingly important role in addressing cyber
security threats.

A. Network Traffic

Network traffic-based analytics are traditionally developed
for intrusion detection [87], [89], [111]. However, with a lit-
tle modification, their applications can be easily extended to
prevent and detect insider threats. For example, many works
have discussed the solutions for tackling botnets. In theory,
once the botnet wedged in a victim network has been cleared
up, an attacker will have no further chances to exploit the
victim network and, hence, no more insider threats posed.
The relevant techniques often rely on a specific parser to
retrieve information from network traffic for dealing with a
certain type of cyber security threats, most of which are actu-
ally motivated and experimented with the benchmarked KDD
Cup’ 99 data set (Computer Network Intrusion Detection’ data
set) [112]. This data set spans over 9 weeks, encapsulating
a total of 4,900,000 connection vectors, each containing 41
features. Four popular categories of attack are simulated and
have affected the data set, namely DoS, User-to-Root, Remote-
to-Local and probing [113]. These techniques are too broad
to be discussed comprehensively. In the following paragraphs,
we will introduce only some representative schemes which are
closely related to insider threats. In terms of the cited schemes,
apart from the commonly seen machine learning and sta-
tistical algorithms, rule-based and information entropy-based
algorithms are also employed.

One of the earliest schemes [34] takes advantage of the
difference of grouping activity between legitimate and Botnet
DNS traffic. In particular, DNS traffic is grouped according
to domain names and, if two groups of IP address access a
same domain name at different times yield a similarity above
a threshold, this domain name is labelled as suspicious and
inserted into a blacklist. Statistical analysis of DNS traffic is
also an effective means for detecting botnets [100]. In the
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proposed scheme, DDNS (Dynamic DNS) request rates and
recurring DDNS replies are extracted as features, with two
algorithms developed based on Chebyshev’s inequality and
Mahalanobis distance respectively for decision-making. As an
immediate result of Chebyshev’s inequality, a domain name’s
Canonical DNS request rate (CDRR) is anomalous if

1
P(ICDRR — | > ko) < 7

where P stands for probability, 1 is the mean and o the stan-
dard deviation. Meanwhile, each domain name’s 24 hours’
CDRRs are sorted in descending order as a new feature vec-
tor. Comparing this feature vector with those obtained from
white-listed domain names in terms of Mahalanobis distance,
a remarkable difference will suggest an anomalous domain
name. DDNS replies are then engaged with the two algo-
rithms to make the scheme complete. Similarly, Internet Relay
Chat (IRC)-based botnets are detectable via analysing IRC
traffic [102], [103]. Since IRC is an application layer protocol
that runs on top of TCP, it only needs to collect TCP flows,
which saves a considerable amount of resources. The J48
decision tree, Naive Bayes and Bayesian Network algorithms
are implemented for classification of IRC and Non-IRC traf-
fic, leveraging features extracted from a network traffic flow
perspective, such as IP protocol, total packets exchanged, dura-
tion, average bytes-per-packet, variance of bytes-per-packet
and etc. When IRC traffic are correctly identified, a cluster
analysis is conducted with 5 additional features that reflect
packet inter-arrival times and packet sizes for each IRC flow
which, finally, reports the cluster whose size is larger than
a threshold as suspicious. Gu ef al. [101] propose a scheme
that aims at IRC and HTTP-based botnets at the same time.
Similarly, irrelevant traffic are filtered out, but IRC and HTTP
traffic are actually captured with a port-independent matcher
rather than classification. Two algorithms are proposed to deal
with each group of clients who connect to the same destination
(domain name or IP address/port): the response-crowd-density-
check algorithm conducts a statistical test (threshold random
walk, TRW) to determine whether a group is a part of bot-
net while the response-crowd-homogeneity-check algorithm
clusters each group and determines whether a group is homo-
geneous in terms of the size of the largest cluster. The Dice
coefficient is employed as the metric of similarity between two
messages (responses) X and 7, i.e.,

Dice(X, V) = 2|n—grams(X) N n—grams(Y)]|

[n—grams(X)| + [n—grams(Y)|
where n represents the size of a sliding window and for a
message X with a length of /, [n—grams(X)|=[—n+1.If a
group is unusually homogeneous, it will be identified as being
affected by a botnet. The DISCLOURE [105] is designed to
detect a wider range of botnets by analysing Netflow data
within a typical machine learning framework. The features
are extracted for each group of clients connecting to the same
destination, which take into consideration flow characteristics,
client access pattern and temporal correlation. Classification
is conducted with the J48 decision tree, SVM and random
forest algorithms, whereby an anomalous feature vector indi-
cates the existence of a botnet. Al-Bataineh and White [104]
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focus on a specific scenario where a botnet (Zeus) is steal-
ing data from victims. Data exfiltration is being performed
over HTTP traffic, with GET and POST requests encrypted
for evading detection. As a result, features are constructed for
each HTTP request/response through computing its entropy
and Byte Frequency Distribution (BFD). Finally, the J48 deci-
sion tree, Naive Bayes and multi-layer perception (MLP)
algorithms are applied to classify a botnet.

Rather than disrupting a botnet, some efforts have been
made to uncover the actions taken immediately by a mali-
cious insider. In this regard, there is a conceptual framework
proposed to detect exfiltration of sensitive data [106]. This
framework engages three individual components to analyse
outbound network traffic: 1) application identification, 2) con-
tent signature generation and detection, and 3) covert com-
munication detection. The first component classifies network
traffic into different applications; the second component gen-
erates a signature for each classification of application in
terms of the contents; and, the last component specifically
looks after the communications in which an insider may have
intentionally hidden the data being exfiltrated (e.g., by encryp-
tion, adding noise, compression and etc.). Still working on
outbound network traffic, Fawcett’s thesis introduces a more
concrete scheme ExXFILD to address data exfiletration from an
information entropy perspective [107]. The EXFILD extracts
sessions from network traffic in light of protocol, data vol-
ume and number of packets. For each protocol, a threshold
is worked out experimentally by computing entropy for each
packet that belongs to a session. When referring to this thresh-
old, any packet and its corresponding session being labelled
as anomalous will be logged for further investigation.

In [108], some hands-on practices are reported for tackling
APTs by assessing outbound network traffic. Apart from secu-
rity policies the traffic should comply with, a couple of rules
are presented to identify a delivery of RAT and, in the mean-
time, statistical characteristics of the contaminated traffic are
summarised for identifying a botnet. Moreover, they introduce
the tools and platforms into which these hands-on practices
are potentially able to incorporate. Trend Micro also reports
some useful rules (signatures) for detecting various RATs and
ongoing APT campaigns in regard of network traffic-based
analytics [109]. By looking into DNS and HTTP traffic, the
Sandnet is designed for the purpose of detecting malware [110]
which, for each extracted feature, details what the expected
behaviour is according to experimentation or its statistical
characteristics as well as the indication of compromise (IoC).

Table V illustrates the taxonomy of network traffic-based
analytics. Overall, the early schemes tend more to utilise
protocol-specific traffic individually such as DNS [34], [100],
IRC [101]-[103] and HTTP [101], [104]. The newer schemes
have adapted to analyse network traffic as a whole for address-
ing a wider range of threats, which often depend on either
a machine learning framework or an ensemble of multiple
sub-detectors [105], [108], [109], [114], [115]. Although
demolishing a botnet prevents an attacker from posing further
threats, the above-mentioned schemes can only be regarded as
compromised solutions for addressing insider threats. Instead,
analysing outbound network traffic may be able to offer an
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TABLE V
TAXONOMY OF NETWORK TRAFFIC BASED ANALYTICS

Threat Type Tech category Algorithm

Data source

rule-based similarity [34]

Chebyshev’s inequality [100]

DNS traffic

statistical

Mahalanobis distance [100]

LRT [101
Insider threats L101]

clustering [102] [103] [101]

IRC & HTTP traffic

machine learning

decision tree, Naive Bayes classifier, MLP [104]

decision tree, SVM, random forest [105]

Netflow

conceptual framework | NA [106]

information entropy

decision tree [107]

rule-based

signature match [108] [109]

outbound network traffic

APT & malware | statistical

correlation analysis [108]

correlation analysis [110]

DNS & HTTP traffic

immediate solution against data exfiltration [106], [107]; how-
ever, they are facing a challenge in modelling packet payloads
which are generally encrypted, compressed or noise added
rather than existing in a plain-text format. Due to the com-
plexity of network traffic, machine learning and statistical
algorithms are still most widely used and have been proven
very effective. Generally speaking, network traffic is a reliable
and versatile data source, although the volume is often mas-
sive. As a result, efficiency and scalability have to be carefully
considered when designing a network traffic-based scheme.

B. Network Logs

To a certain extent, network logs can be regarded as
application-specific information parsed from network traffic,
as any application layer service is ultimately fulfilled via
the network layer. In other words, theoretically network logs
can deal with cyber security threats as same as network
traffic. Network logs are often collected from the function-
ing servers deployed in a network, such as Proxy, Email,
LDAP, Web server, DHCP, VPN and etc. Technically speak-
ing, there are also some similarities between network logs and
network traffic based analytics. For example, statistical and
machine learning (deep learning) algorithms are made heavy
use. However, since network logs provide information at a
higher layer and often in a more formatted and structured
manner, they are more appropriate to be fed into a system
that comprehensively oversees an enterprise-level network.

Myers et al. [118] propose a conceptual framework that
deals with a malicious insider who exploits internal organisa-
tional Web servers. The key idea is to incorporate monitor and
detection capabilities into an existing log management system
which is thus enabled to expose unauthorised access and auto-
mated activities resulting from a malicious insider by looking
into Web server logs. Since graph-based algorithms are suited
to represent an insider’s correspondence pattern, they have
been attempted in addressing insider threats such as [119].
The cited scheme works on Email and Cell phone logs, specif-
ically analysing the correspondence patterns. A normative
pattern (a graph substructure) is learnt from the entire graph
that describes an insider’s correspondences by minimising the

description length (MDL) and an incident of interest is raised
when a test graph substructure is inconsistent with the norma-
tive pattern. Based on Splunk Enterprise (a machine-generated
big data platform), Hanley and Montelibano introduce a num-
ber of hands-on rules for detecting data exfiltration [117],
where Email and Active Directory (AD, or its equivalent
LDAP) logs and partial HR records are made use. Each
rule is meant to express a specific type of unusual insider
activity regarding Email communications. For examples, an
insider’s daily transferred bytes are beyond a threshold, and
the recipient is not found in the organisational name-space.
Franc’s scheme attempts to detect malicious network traffic
by using proxy logs [116]. In terms of source and destina-
tion IP addresses, source and destination ports and protocol,
events of proxy logs are grouped as flows. Then, the flows
are grouped into bags each of which actually represents a pair
of user/source IP address and second-level domain. With a
total of 15 features extracted form each flow, the SVM and
multiple instance learning (MIL) algorithms are implemented
in identifying an anomalous bag, indicating an anomalous
communication occurred between a user and a domain.

The following works reveal a new trend that correlates and
analyses multiple types of network log simultaneously to offer
prevention and detection capability at an enterprise-level. A
number of prototype systems have been designed, which either
integrate a suite of detectors (each works on a specific type of
network log) into an ensemble [92], [93], or engage a machine
learning framework to deal with a full set of features extracted
from multiple types of network log [94], [121]. For example,
the PRODIGAL (PROactive Detection of Insider threats with
Graph Analysis and Learning) [92], [93] extracts more than
100 features from a wide range of network logs such as Email,
proxy, Lightweight Directory Access Protocol (LDAP) and so
forth. Multiple detectors are constructed with various statis-
tical, machine learning and graph-based algorithms such as
KDE, GMM, LR, kNN, HMM, STINGER, and seed set expan-
sion (SSE) each of which is working with a specific subset of
the features. The capabilities of the PRODIGAL are apparently
greater than a conventional detector, which generate alerts not
only for anomalous observations but also for any unusual pat-
terns and scenarios. A scoring mechanism is employed for
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TABLE VI
TAXONOMY OF NETWORK LOG BASED ANALYTICS

Threat Type Tech category Algorithm

Data source

Malicious communication | machine learning

SVM, MIL [116]

proxy logs

Data exfiltration rule-based

signature match [117]

Email, LDAP logs

conceptual framework | NA [118]

Web server logs

graph-based MDL [119]

Email, Cell phone logs

STINGER, SSE [92] [93], IF [120]

Insider threats statistical

Markov model, LR, KDE, GMM [92] [93]

Email, proxy , LDAP logs

machine learning

KNN [92] [93]

kMC [94]

proxy, LDAP, DHCP, VPN logs

deep learning

DNN, RNN [121]

proxy, Email logs

attributing different anomalies to a same responsible entity
(e.g., user, computer, Email address, URL) and assigning a
score to this entity according to the number of anomalies.
Finally, a manual investigation can be undertaken to iden-
tify incidents of interest in light of the business requirements.
The Beehive [94] is a system that functions similar to the
PRODIGAL but fulfils within a machine learning framework.
This system makes use of proxy, DHCP, VPN and LDAP logs
at the same time, from which 15 features are extracted for a
total of 35,000 hosts on a per day per host basis. These features
are determined from three aspects: host, traffic and policy,
which are expected to characterise normal activities in an
enterprise network. The PCA is applied to reduce the dimen-
sionality of the feature set and then the k-means clustering
algorithm is implemented in identifying anomalies. The exper-
iments conducted with a real world data set have demonstrated
that the Beehive is very effective against unusual behaviours
caused by adware, malware, policy violations and other suspi-
cious activities (subject to manual investigation). There is also
a graph-based system proposed to address insider threats [120].
In particular, each user’s interactions with devices are mod-
elled as a weighted undirected large-scale bipartite graph, of
which the parameters are obtained from relevant LDAP, proxy,
Email logs and some other auxiliary information (e.g., file
operation and psychological data). The isolation forest (IF)
algorithm is applied to detect a suspicious user by looking into
the graphs and their sub-graphs. Tuor ef al.’s scheme [121]
once again demonstrates deep learning’s exclusive capabil-
ity in dealing with a large-scale complex machine learning
problem. Regarding a user’s behaviour, this scheme extracts
408 continuous and 6 categorical features in total from Email
and proxy logs and file operations. A deep neutral network
(DNN) is trained to produce a series of hidden state vectors
which are subsequently fed into a RNN to perform detection
in real time where the decision making is actually relied on
the conditional probability of the hidden state vector.
Research of network log-based analytics begins almost
one decade later than network traffic-based analytics, but
have made substantial progress. The taxonomy is shown in
Table VI. Except for the scheme proposed in [116] that
focuses on identifying malicious communications, most of
the proposed schemes and systems aim at addressing insider
threats. The conceptual framework [118] and the graph-
based [119] and rule-based [117] schemes are representatives

of early research in this regard, all of which work with rel-
atively individual types of network log. The more recent
systems tend to leverage various types of network log at the
same time, particularly tailored to look after an enterprise-level
network [92]-[94], [120], [121]. Depending on an ensemble
of detectors or a machine learning framework, information
are correlated across different types of network log in these
systems. For example, an association between a user’s job
title (LDAP) and the Web categories (proxy) the user has
accessed may be potentially exploited in determining an
unusual behaviour. In practice, information involved in a
network log can be equally obtained from network traffic with
a properly designed parser. However, such a parsing process is
often extremely time-consuming and, therefore, network logs
are sometimes preferred as they have presented the required
information in a clear manner. The major disadvantage of
network logs is that in order to maintain the data integrity
and consistency they often contain redundant information such
as duplicate entries and constant text messages, resulting in a
large demand for data storage and some extra computational
cost.

V. CONTEXTUAL DATA-BASED ANALYTICS

In addition to conventional host and network data, con-
textual data are being increasingly explored by researchers
due to their remarkable use in reducing false positive rate
and time taken to make a final decision. In this survey,
contextual data refer to those which provide contextual infor-
mation regarding a human user such as HR and psychological
data. According to the literature, it is generally believed that
the intent of a user being malevolent can be well captured
through contextual data. Usually, HR data are available from
an employee directory or a specific ERP (Enterprise Resource
Planning) system [125], which can reveal employment related
information such as type of employment, remaining years of
contract, remaining days of leave, job title, salary range, par-
ticipated projects, business travel records, performance review
and so forth. From HR data, for example, it is easy to find
out that en employee has been suffering a stagnant salary
increase/promotion for a while, indicating an increased risk
for this employee to take malevolent actions [11]. In general,
psychological data are not immediately available. Instead, the
data collection often needs a specifically designed process of
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TABLE VII
TAXONOMY OF CONTEXTUAL DATA BASED ANALYTICS

Threat Type Tech category Algorithm Data source
rule.—b?sed signature match [122] HR. network
statistical KDE [122]
graph-based bipartite graph [123] HR, host
Insider threats | conceptual framework | NA [124] HR, psychological, host, network
factor analysis scoring [10] psychological, host
h-based SAD [11
£rap - e - [ ] psychological, network
machine learning Bayesian [11]

psychological profiling [126] which measures an employee’s
sentiment changes by analysing the following data: question-
naire [10], social media posts and activities, or dynamics of
social connections [11]. Intuitively, a sentimentally unstable
or disturbed employee due to disappointment, irritation and/or
stress is more likely to take irrational actions against the
organisation.

A. HR Data

Two representative works are introduced in this subsection
to exhibit how to take advantage of HR data. In general, HR
data that contain employment related information are easily
accessible in an organisation and potentially have set restric-
tions on an employee’s behaviours which is a kind of critical
information for behavioural analysis.

The system ELICIT (Exploit Latent Information to Counter
Insider Threats) is proposed to address insider threats based
on a ‘need-to-know’ principle [122], which takes advantage
of network traffic and contextual data both. Briefly, this
system seeks to identify insiders who abuse the privileges
which are not expected within their roles’ responsibilities and
accountabilities and thus violate the ‘need-to-know*‘ princi-
ple. Information-use events are generated from network traffic
using a series of protocol decoders, into which contextual data
collected from an employee directory such as name, office
location, job description, seniority and projects are periodi-
cally incorporated. When the events are attributed respectively
to the users according to the contextual data, a number of
hand-coded rules and the KDE based algorithms are employed
as sub-detectors. Finally, a threat score is generated for each
user via a Bayesian network that aggregates all the alerts trig-
gered by the sub-detectors. Nance and Marty [123] introduce
a graph-based scheme to detect insider threats with the basic
idea that maps a user’s normal behaviours into a bipartite
graph according to his/her workgroup role. A large number of
precursors are obtained from individual or aggregated entries
of various application and operating system logs to represent
each workgroup role’s normal and expected behaviours. Once
a user conducts any out-of-scope behaviours in terms of his/her
workgroup role, an alert will be triggered.

B. Psychological Data

Psychological data are not available as commonly as HR
data but they are very useful for intent analysis. From a senti-
ment perspective reliable psychological data will well reflect

an employee’s feelings and attitude about the organisation and,
hence, can be taken as a kind of complementary information
for addressing insider threats.

Kandias’s scheme attempts combining conventional host-
based analytics with psychological profiling [10], which is
expected to reduce false positive rate in detecting insider
threats. A system call-based analytics is employed in conjunc-
tion with an IDS and a honeypot to profiling a computer’s
usage, while the psychological profiling is attained by using
a specifically designed questionnaire that reveals a user’s
sophistication, predisposition and stress level. When a user’s
behaviour is suspicious in terms of the host-based analytics,
the scheme will seek confirmation from the relevant psycho-
logical profile. This is achieved with a three-factor (motive,
opportunity and capability) analysis, where a score (low: 1-2,
medium: 3-4, high: 5-6) is assigned to each factor for quan-
tifying possibility of being malevolent. The final decision
can be made with a simple scoring mechanism that the sum
of assigned scores is greater than 8. The CHAMPION (for
Columnar Hierarchical Auto-associative Memory Processing
In Ontological Networks) is proposed as a conceptual frame-
work to prevent insider threats proactively [124]. This frame-
work aims to alert a malicious action in advance rather
than not responding until clear indication of compromise has
been observed, by conducting analysis of a user’s intent,
capability and opportunity which are sort of similar to the
three-factor analysis. Network and host-based analytics are
applied to uncover any policy violations and unusual access
patterns and, from the HR and psychological data, explicit
‘human factors’ such as correlations between certain person-
ality characteristics and counterproductive work behaviours
(or higher-risk employees) are extracted. Taking into con-
sideration the above information entirely, the CHAMPION
is able to identify a malicious insider in a timely man-
ner with high confidence. The last example is the scheme
proposed by Brdiczka er al. [11]. This scheme adopts struc-
tural anomaly detection (SAD) to discover anomalies from
social and information networks which, in particular, mod-
els a user’s connectivities in Email communication, social
network, Web browsing and etc. as a graph and captures
the dynamics that occurs at each node of the graph with the
sequential Bayesian algorithm. Then, psychological profiling
is leveraged to eliminate false positives through an intent anal-
ysis, with three features extracted: motivation, personality and
emotional state. A user’s connectivity behaviour and the psy-
chological features will be aggregated together to generate
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a threat score for the user regarding the degree of being
malevolent.

Table VII presents the taxonomy of contextual data-based
analytics. In terms of data source, we can simply classify the
above cited works as ‘conventional (host data and/or network
data) + HR data’ [122], [123], ‘conventional + psychological
data’ [10], [11] and ‘conventional + HR and psychologi-
cal data’ [124]. HR data can provide information for setting
an employee’s expected behaviour and partially for under-
standing an employee’s satisfaction with the employer, while
psychological data tend more to reflect an employee’s personal
characters and sentimental changes. Therefore, HR and psy-
chological data both have found use in intent analysis, and
HR data also work for behavioural analysis. Although con-
textual data-based analytics have shown a great advantage in
reducing a false positive rate and saving the time spent on
decision-making, some efforts are still needed to make them
more technically applicable. Firstly, HR and psychological
data often exist in an unstructured and unformatted form. It is
hard to clean and retrieve useful information from such messy
data. Currently, this is reached with heavy reliance on domain
experts’ manual works [10], [123]. Secondly, contextual data-
based analytics can not work alone without a conventional
analytics, for identifying a malicious insider immediately. For
example, it is insufficiently evidenced to suggest an employee
will take bad actions against the organisation because of
stagnant wage growth or negative emotional swings.

VI. DISCUSSION AND RESEARCH CHALLENGES

This section discuss some other aspects regarding this
research of preventing and detecting insider threats and present
the research challenges that need to be addressed. Figure 3 pro-
vides a panoramic mapping between insider threats and their
countermeasures.

A. Discussion

1) Publicly Available Data Set: In this subsection, we
briefly introduce some publicly available data sets which can
be leveraged for research of addressing insider threats. Due to
complexity of data collection, volume and privacy concerns,
this kind of data sets are still very rare. So far, the Carnegie
Mellon University (CMU) CERT Program’s insider threat
database [127] is the only one that has been released pub-
licly for insider threat research. Within a span of 18 months,
this database collects a wide range of data sources such as
Email, Proxy and AD logs, file operations, and logon/off,
asset, decoy and psychological data. A total of 4000 employ-
ees’ data are involved, with more than 700 insider threat cases.
There are three scenarios. 1) A malicious insider conducts data
exfiltration via removable media or a cloud box. 2) A mali-
cious insider delivers malware via removable media to result
in sabotage of the ICT system. 3) A masquerader imperson-
ates someone else and conducts data exfiltration via Email.
From the data source’s perspective, this database has involved
host logs, network logs and contextual data and, hence can be
applied to develop and test various analytics.
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In addition to the CMU’s database, for each of the
previously mentioned analytics, we present a couple of bench-
mark data sets (if available). The University of New Mexico
(UNM)’s sequence-based intrusion detection data set is built
for the system call-based analytics [128]. The system call
traces are collected from a number of common privileged
programs such as sendmail, ftp, Ipr, named and so forth.
Some intrusions and/or error conditions are injected during the
course of data collection such as privilege escalation and buffer
overflow. The Australian defence force academy (ADFA)’s
linux data set (ADFA-LD) [129] is a recently released data
set that aims at replacing traditional system call data sets with
one that better represents a modern computer system. The
system call traces are collected while the host (assumed to be
a server) is operated as usual and, meanwhile, some popular
cyber attacks such as Hydra-FTP, Hydra-SSH, Adduser, Java-
Meterpreter, Meter-preter and Webshell are launched against
the server. This data set contains around 5000 normal traces
for training and validating, and each attack results in 8-20
problematic traces. Unix shell command-based analytics are
often experimented with the Purdue’s data set [130], which
contains 9 sets of sanitised user data generated from 8 Unix
users over the course of up to 2 years. The success criteria
of a scheme is to differentiate whether two sets of commands
are drawn from the same user or not, which is then applica-
ble to detect a masquerader. The KDD’ 99 data set that has
been mentioned earlier is currently the primary one for exper-
imenting network traffic-based analytics [112]. This data set
is collected in the format of TCP dump over a course of 9
weeks, with four main categories of attack injected namely
DoS, User-to-Root, Remote-to-Local and probing. Although
this data set is no longer widely recognised (almost obso-
leted), it still has potential to provide insights into detecting
the early stage insider threats. Alternatively, the KDD’99 data
set’s renovated version NSL-KDD data set [131] (smaller and
less redundancy) may have provided an acceptable transition
until a more qualified data set is made publicly available.

2) Preventing Insider Threats: One may be aware of that
most of the schemes, systems, and conceptual frameworks
surveyed above focus primarily on detection rather than
prevention. Indeed, a dedicated discussion about preventing
insider threats is scarce in the literature. However, from the
limited number of references, we still can draw a rough out-
line by compiling the scattered pieces of materials together. A
highly cited guide regarding intrusion detection and preven-
tion systems [132] defines an IDS as software that automates
the intrusion detection process and an intrusion prevention
system (IPS) is software that fulfils all functionalities of an
IDS but also attempts to stop possible incidents. Following
this conceptual definition, in the context of addressing insider
threats, a prevention scheme is meant to be a detection
scheme with additional capabilities to stop insider threats.
From this perspective, a detection scheme that has success-
fully defeated an early stage threat on the intrusion kill chain
can be regarded as an effective prevention from an insider
threat. More genuine examples are those proactively dealing
with insider threats [11], [124] which identify suspicious inci-
dents with a typical detection technique and takes action to
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stop the incidents once they are confirmed from the analysis
of psychological profiles.

From a different perspective, prevention can also be thought
of as defensive measures that could prevent or facilitate early
detection of many of the insider threats [133]. In this regard,
the commonly seen measures are comprised of: 1) authentica-
tion, 2) access control, and 3) security policy [133]-[135].
Authentication provides the ability to identity entities in
a system and between systems and has been traditionally
considered as a critical component for preventing insider
threats [134]. Its research is being constantly continued with
focus on improving the capability against insider threats;
for example, a dynamic ID-based remote user authentica-
tion scheme [136] is proposed to enable users to choose and
change their passwords freely without maintaining any verifier
table which has involved design considerations in preventing
impersonation from a malicious insider; or, the fourth fac-
tor ‘where you are’ is added on top of the three-factor (‘what
you have’, ‘what you know’, ‘what you are’) authentication to
address insider threats [137]. Access control is able to restrict
access selectively to a place or other resource or, more for-
mally, can be defined as the mechanism providing or limiting
access to electronic resources based on some set of creden-
tials [135]. Extensive research has been undertaken in making
an access control mechanism insider-aware. For example, a
crypto-system engaged with the Key-Policy Attribute-Based
Encryption (KPABE) is proposed to implement access con-
trol [138]. Due to fine-grained sharing of encrypted data,
such a mechanism prevents a malicious insider from steal-
ing and leaking information by accessing data shared among
the entire user hierarchy which often occurs in a traditional
coarse-grained access control mechanism. Some effort has
also been made to remodel new insider-aware access con-
trol mechanisms which take into consideration insiderness,
trust management and risk assessment [139] and, extend the
existing role-based access control mechanism to be insider-
aware with the notation of risk and trust integrated [140]
where the risk values associated with permissions and roles
are calculated using a Coloured Petri-net. Security policy is a
definition of what it means to be secure for a system, organi-
sation or other entity, which often exists in the form of a rule
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(i.e., security policy language) and needs ongoing effort in
managing, reviewing and tuning [135]. Practically, there are a
number of recommended practices which can be leveraged to
enhance the immunity of a system against insider threats [133];
for example, implement strict password and account man-
agement policies and deactivate computer access following
termination.

Although prevention can be understood in the above two
ways and both are critical for addressing insider threats, the
former is actually favoured by this survey as we are meant to
sort out a clear development roadmap from a data analytics
perspective instead of secure system designing.

3) Technical Considerations: This subsection discusses
some technical considerations for designing a scheme, from
which the skeleton of a scheme can be drawn in a step by
step manner. At first, it is not always necessary to focus
on an all-in-one scheme, which means that a scheme is
designed only in light of the specific use cases and practi-
cal requirements and restrictions. For example, when dealing
with insiders who are conducting sensitive data leakage, at
minimum cost, a scheme only needs to deploy a lightweight
statistical detector that works at each local host and analyses
unusual file-related operations and network data transfers. In
short, three factors matter for a scheme, namely 1) types of
insider threat, 2) data sources and 3) analytical techniques. The
three factors should be figured out before we begin designing a
scheme.

Secondly, we should look at the entity that the analysis
being conducted on. Typically, an entity can be user, host,
domain name, IP address, program (process), TCP session and
any dimension from which a certain behaviour is measurable.
Although ultimately we are interested in insider threats, their
relevant early stage threats can not necessarily be attributed to
a user. For example, when a number of victim hosts have been
compromised and controlled by a bot master who refreshes its
domain name randomly with the domain generation algorithm
(DGA), at this time, a scheme that works on domain name and
host may be a better option rather than looking into user’s
unusual behaviour. However, if we are dealing with mali-
cious insiders who are exfiltrating sensitive data over network,
apart from host and TCP session, user should absolutely be
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inclusive. Obviously, choosing the entity for the analysis is
quite open and highly dependent on the use case and appli-
cation scenario. As a consequence, currently, a more widely
applied strategy is to conduct analysis on different entities,
aggregate the analytical results into the same entities, and
report those top anomalous.

Following the above discussion straightforwardly, we should
think about the architecture of a scheme. Based on the cited
works, it is easy to summarise that there are two common
architectures: 1) engage multiple analytical techniques to work
on each data source separately and 2) an individual analyti-
cal technique is applied to analyse multiple features extracted
from data sources. We can not simply make a conclusion about
which architecture outperforms since they both have found a
lot of successful uses. It can be observed that it is more flexible
to select and tune the analytical technique according to data’s
specific characteristics when analysing each data source sep-
arately, but it fails to take advantage of potential correlations
existed between data sources. Working with multiple features
at once, on the contrary, is able to provide deeper insights
into data although the proposed technique often does not
generalise and the computational complexity is significantly
increased.

The last paragraph is spent on a brief compari-
son among behavioural, relationship and intent analyses.
Undoubtedly, behavioural analysis is the most widely adopted
since behavioural analysis is almost applicable to any
behaviour conducted by any entity. For example, we can
model each user’s Internet browsing behaviour with the fol-
lowing features: number of accessed domain name, number
of accessed IP address, amount of sent/received data, number
of engaged ports and etc. In contrast, relationship analysis is
more suited to discover connectivities among entities such as
user-host/user-domain name connections and Email commu-
nications, where a graph-based technique is often employed
for modelling and inference. Intent analysis can only be con-
ducted on human users, relying on HR or psychological data.
It is insufficient to work alone but has shown great potential
to eliminate false positives while working with other con-
ventional analytical techniques. Although each of the above
three analyses has its own specific application scenarios,
recent schemes and systems tend more and more to combine
behavioural and intent analyses together.

B. Research Challenges

1) Big Dirty Data Storage and Management: Generally
speaking, prevention and detection of insider threats is highly
data-driven. That is, we have to deal with a huge amount
of data coming from an extremely wide range of comput-
ers, servers, network equipments and third party information
providers which may exist in an unstructured and unformatted
form due to diverse operating systems, data acquisition proto-
cols, configuration issues, hardware faults and software bugs.
In this regard, challenges are arisen from how to store and
manage such ‘big dirty data’ properly.

The data we are working with have met the 3Vs definition of
big data, namely big volume, high velocity and variety [141].
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Thus, from data storage and management perspective, a ded-
icated big data platform is essential. However, building a big
data platform requires massive time and effort and a consider-
able amount of money, which is not easily affordable. This
may be considered as the first challenge. A possible solu-
tion is to leverage an open source stack, such as Apache
Hadoop [142].

Furthermore, the data are often ‘dirty’, coming with a
large number of unexpected missing and noisy data, dupli-
cate entries, unreadable characters and etc. They have to be
pre-processed before useful information can be extracted and
passed into the analytics. Such a process relies on exten-
sive scripting and coding skills and a deep understanding
about various operating systems, database systems, software
and contextual knowledge, resulting in the second challenge
“pre-processing of big dirty data”. This process can often be
accomplished through data cleansing [143] which is supposed
to detect and remove corrupt or inaccurate data from a data
set, and identify incomplete, incorrect, inaccurate or irrelevant
parts of the data and then replace, modify or delete the dirty
or corse data [144].

2) Knowledge Extraction and Management: While some
of the jobs have been done given that a well-maintained big
data platform is in place and the data are pre-processed prop-
erly, extraction of useful information for a specific task is still
challenging as capturing the tiny footprint left by an attacker
is more like “find a needle in a haystack”. For example,
if we are aiming at detect unusual computer usage, intu-
itively we may categorise daily computer usage behaviours
as logon/off, Email, social media, Web browsing, text edit-
ing, professional software operating, video/music playing and
so forth. Arranging the categorised behaviours along the time
axis yields a model of computer usage according to which the
task is achievable. This example raises a requirement that how
to extract knowledge about behaviour from raw data sources.
In this case, assuming that we have access to any required data
sources namely network traffic, AD, proxy, Email logs, and file
operation and some other host data, it is still not straightfor-
ward to identify those behaviours. Looking at a Web browsing
behaviour particularly, we may need to sort out http sessions
from the network traffic and, by referring to 1) the mapping
between IP address and user from the AD logs and the host
data and 2) the http user agent and Web content category infor-
mation from the proxy logs, determine who the behaviour
should be associated with and whether this is certainly a
Web browsing behaviour rather than other similar behaviours
such as download, software update, or remote desktop access.
Technically, such a process of knowledge extraction needs a
couple of ways of manipulating data such as evaluating, trans-
forming, correlating and etc., which makes more effective use
of data and potentially reduces the amount of data the analytics
have to deal with.

However, knowledge extraction has to be repeated if the
use case has changed. For example, it may be requested to
detect periodic communications between user/host and domain
name/IP address, unusual changes of a certain application’s
state, or unusual authentications. This raises a challenge in
managing the extracted knowledge effectively or, in other
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words, how to improve the reusability of extracted knowl-
edge. The Common Information Model (CIM) [145] is a
possible solution to offer stronger reusability for extracted
knowledge which is known as “an open standard that
defines how managed elements in an IT environment are
represented as a common set of objects and relationships
between them”.

3) Intelligent Decision Making: Choosing an appropri-
ate analytics for making decisions intelligently is always a
challenging problem in the context of data analysis. Decision-
making is directly related to how to interpret a result from
the analytics which, in most of the cases, is simply an
binary output: normal or anomalous. As what has been men-
tioned previously, currently, decision-making is heavily relied
on inspections conducted manually by domain experts (e.g.,
computer emergency response team (CERT) [94]) and being
consistently challenged by high false positive rates (FPRs).
Due to the excessive amount of data, even a very small num-
ber of false positives will result in manual inspection based
decision-making hardly feasible. As a consequence, the sub-
sequent research should be focused primarily on removing
reliance on manual work (i.e., automated decision-making) and
reducing FPRs. Moreover, considering the difficulty in extract-
ing useful knowledge as mentioned in the previous subsection,
an automated process of knowledge extraction relying on min-
imised prior knowledge is also a point making the analytics
more intelligent.

Applying a machine/deep learning framework to discover
complex dynamics from a wide range of features or leverag-
ing an ensemble of multiple detectors each of which resolves
a specific use case is a remarked tendency in the recently
proposed schemes and systems [92]-[94], [121]. The for-
mer emphasises on automated knowledge extraction and less
reliance on domain prior knowledge, whereas sometimes lead-
ing to a worse interpretability of the analytics. Incorporating
prior knowledge to a certain degree into the procedure of fea-
ture extraction may offer a better balance between automation
and interpretability. For example, we know that communicat-
ing with a domain name that never occurs and grammatically
incorrect (e.g., generated by the DGA) may be an indica-
tion of botnet. The semantic features of a domain name such
as number of pronounceable English words contained and
sequential probability in terms of a white/black list should
be employed. When these features are involved, naturally, the
anomalies resulting from the analytics tend more to reflect the
existence of a botnet and, hence, help to reduce the work-
load of manual inspection as well as the FPRs. The latter
comes with better interpretability since a final decision is made
by aggregating results from multiple explicit use cases. For
example, if we are looking to identify an insider who is exfil-
trating sensitive data, we may split this task into a couple
of specific use cases: 1) detect unusual file operations based
on host data, 2) detect unusual data transfer over network
based on network traffic and 3) detect unusual access to sen-
sitive data that does not need to know based on network
logs. For each of the use case, a specific detector is devel-
oped. Then, a strategy is designed to aggregate the results
from the detectors together, popping up the users who are
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considered suspicious. Such a kind of solutions have taken
advantage of domain knowledge, enabling an easier manual
inspection to be conducted for making a final decision. But,
heavy reliance on prior knowledge also restrict their reusabil-
ity and extendability and, thus, not sufficiently intelligent.
In summary, there is still a long way to make a solution
fully independent of prior knowledge and manual inspection
which also reaches a sound detection accuracy at an extreme
low FPR.

VII. CONCLUSION

In this survey, we have reviewed the schemes and systems
proposed for addressing insider threats. Firstly, we compile
the definitions for three major types of insider, namely traitor,
masquerader and unintentional perpetrator. Secondly, we con-
ceptually extend the range of insider threat by involving those
relevant early stage threats which are all lined up with the APT
intrusion kill chain. Then, we focus on the proposed works
from a data analytics perspective, where they are presented
particularly according to host, network or contextual data
based analytics. For each cited work, its capability against
insider threats, how it extracts information from data sources
and what an analytics/algorithm is applied to make a decision
are reviewed. In the meantime, relevant works are compared
and contrasted, with a short summary followed to present the
pros and cons. Finally we discuss some issues drawn from
what we have reviewed and identify a few of research chal-
lenges, aiming to motivate and facilitate researchers continuing
in contributing to this topic.
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